Results for:
Species: Pseudomonas rhodesiae

Henicosane

Mass-Spectra

Compound Details

Synonymous names
HENEICOSANE
n-Heneicosane
Henicosane
629-94-7
UNII-I93S5U5DMP
I93S5U5DMP
EINECS 211-118-9
AI3-36479
DTXSID9047097
CHEBI:32931
HSDB 8351
CH3-[CH2]19-CH3
MFCD00009346
Eicosane, methyl-
CH3-(CH2)19-CH3
henicosan
Henicosane #
Heneicosane, 98%
Heneicosane; n-Heneicosane
Heneicosane, analytical standard
DTXCID7027097
LMFA11000572
AKOS015902468
HY-W089845
MCULE-3230962872
AS-56310
DB-054362
CS-0132444
H0367
NS00012510
D90848
Q150955
FD8EC3D3-E6A2-47B6-9E26-13A115192857
(S)-(-)-2,2'-Bis(diphenylphosphino)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl (R)-H8-BINAP
Microorganism:

Yes

IUPAC namehenicosane
SMILESCCCCCCCCCCCCCCCCCCCCC
InchiInChI=1S/C21H44/c1-3-5-7-9-11-13-15-17-19-21-20-18-16-14-12-10-8-6-4-2/h3-21H2,1-2H3
FormulaC21H44
PubChem ID12403
Molweight296.6
LogP11
Atoms21
Bonds18
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes saturated hydrocarbons
CHEBI-ID32931
Supernatural-IDSN0090118

mVOC Specific Details

Boiling Point
DegreeReference
359 °C peer reviewed
Volatilization
The Henry's Law constant for heneicosane is estimated as 120 atm-cu m/mole(SRC), based upon its vapor pressure, 8.73X10-8 mm Hg(1), and water solubility, 2.9X10-8 mg/L(2). This Henry's Law constant indicates that heneicosane may volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 1.8 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 6.8 days(SRC). However, adsorption to soil is expected to attenuate volatilization(SRC). The estimated volatilization half-life from a model pond is greater than 2 years if adsorption is considered(4). Heneicosane is not expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure.
Literature: (1) Perry RH, Green D; Perry's Chemical Handbook. Physical and Chemical Data. 6th ed., New York, NY: McGraw Hill (1984) (2) Coates M et al; Env Sci Tech 19: 628-32 (1985) (1985) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987)
Solubility
In water, 2.9X10-8 mg/L at 25 deg C (extrapolated)
Literature: Coates M et al; Environ Sci Technol 19: 628-32 (1985)
Literature: #Insoluble in water
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-288
Literature: #Slightly soluble in ethanol; soluble in petroleum ether
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-288
Soil Adsorption
The Koc of heneicosane is estimated as 1.1X10+6(SRC), using an estimated log Kow of 10.65(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that heneicosane is expected to be immobile in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 15, 2016: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
8.73X10-5 mm Hg at 25 deg C (extrapolated)Perry RH, Green D; Perry's Chemical Handbook. Physical and Chemical Data 6th ed., New York, NY: McGraw Hill (1984)
MS-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas FluorescensAntifungalrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaeAntifungalrhizosphereJishma et al. 2017
ProkaryotaStreptomyces Philanthiantifungal activity against Aspergillus parasiticus TISTR 3276 and Aspergillus flavus PSRDC-4NABoukaew and Prasertsan 2020
ProkaryotaBacillus Megateriumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Brassicacearumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanablack pepper rootSheoran et al. 2015
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas FluorescensMR-VP brothGS-MSno
ProkaryotaPseudomonas RhodesiaeMR-VP brothGS-MSno
ProkaryotaStreptomyces Philanthisterile wheat seedsGC-MSyes
ProkaryotaBacillus MegateriumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas BrassicacearumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaLuria Bertani AgarSolvent extraction with hexane, GC/MSno


Nonadecane

Mass-Spectra

Compound Details

Synonymous names
NONADECANE
n-Nonadecane
629-92-5
Nonadekan
UNII-NMY21D3Y5T
NMY21D3Y5T
ISTD
NONADECANE, N-
EINECS 211-116-8
NSC 77136
NSC-77136
AI3-36122
DTXSID9047170
Nonadecane-d40 98 atom % D
CHEBI:32927
HSDB 8349
CH3-[CH2]17-CH3
MFCD00009012
n-Nonadecane 10000 microg/mL in Dichloromethane
Nonadecane, analytical standard
CH3-(CH2)17-CH3
Nonadecane; NSC 77136; n-Nonadecane
nonadecan
N-NONADECANE, 99%
Nonadecane,(S)
Nonadecane, 99%
bmse000764
QSPL 079
DTXCID7027170
NSC77136
LMFA11000578
STK032371
AKOS000487358
MCULE-7331201096
AS-56223
N0282
NS00013026
S0291
D91667
AN-329/40543671
Q150911
5DFF1F48-853A-4CE2-852C-81C871EF1DA6
Microorganism:

Yes

IUPAC namenonadecane
SMILESCCCCCCCCCCCCCCCCCCC
InchiInChI=1S/C19H40/c1-3-5-7-9-11-13-15-17-19-18-16-14-12-10-8-6-4-2/h3-19H2,1-2H3
FormulaC19H40
PubChem ID12401
Molweight268.5
LogP9.9
Atoms19
Bonds16
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes saturated hydrocarbons
CHEBI-ID32927
Supernatural-IDSN0212370

mVOC Specific Details

Boiling Point
DegreeReference
330 °C peer reviewed
Volatilization
The Henry's Law constant for nonadecane is estimated as 68 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that nonadecane is expected to volatilize rapidly from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 1.6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 6.5 days(SRC). However, adsorption to suspended solids and sediment is expected to attenuate volatilization(SRC). The estimated volatilization half-life from a model pond is greater than 2 years if adsorption is considered(4). Nonadecane is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 4.9X10-5 mm Hg(5).
Literature: (1) Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 14, 2016: http://www2.epa.gov/tsca-screening-tools (4) US EPA; EXAMS II Computer Simulation (1987) (5) Yaws Cl; Handbook of Vapor Pressure. Volume 3 - C8 to C28 Compounds. Houston, TX: Gulf Publishing Co. (1994)
Solubility
In water, 3.7X10-5 mg/L at 25 deg C (est)
Literature: US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 17, 2016: http://www2.epa.gov/tsca-screening-tools
Literature: #Insoluble in water
Literature: Larranaga, M.D., Lewis, R.J. Sr., Lewis, R.A.; Hawley's Condensed Chemical Dictionary 16th Edition. John Wiley & Sons, Inc. Hoboken, NJ 2016., p. 986
Literature: #Slightly soluble in ethanol; soluble in ethyl ether, acetone, carbon tetrachloride
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-424
Literature: #Soluble in alcohol and ether
Literature: Larranaga, M.D., Lewis, R.J. Sr., Lewis, R.A.; Hawley's Condensed Chemical Dictionary 16th Edition. John Wiley & Sons, Inc. Hoboken, NJ 2016., p. 986
Soil Adsorption
The Koc of nonadecane is estimated as 3.2X10+5(SRC), using an estimated log Kow of 9.67(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that nonadecane is expected to be immobile in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 14, 2016: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
4.9X10-5 mm Hg at 25 deg C (extrapolated)Yaws Cl; Handbook of Vapor Pressure. Volume 3 - C8 to C28 Compounds. Houston, TX: Gulf Publishing Co. (1994)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas MonteiliiPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas MonteiliiPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas PutidaPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas TaiwanensisAntimicrobialrhizosphereJishma et al. 2017
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaBacillus Sp.n/aNAZou et al. 2007
ProkaryotaStenotrophomonas Maltophilian/aNAZou et al. 2007
ProkaryotaAlcaligenes Faecalisn/aNAZou et al. 2007
ProkaryotaArthrobacter Nitroguajacolicusn/aNAZou et al. 2007
ProkaryotaLysobacter Gummosusn/aNAZou et al. 2007
ProkaryotaSporosarcina Ginsengisolin/aNAZou et al. 2007
ProkaryotaPseudomonas Simiaenarhizosphere of a soybean field in the province of Rajasthan, IndiaVaishnav et al. 2016
ProkaryotaPseudomonas Putidanablack pepper rootSheoran et al. 2015
ProkaryotaEnterobacter Sp.NANAAlmeida et al. 2022
Cyberlindnera FabianiiMa et al. 2023
Lactobacillus PlantarumMa et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas MonteiliiNBGS-MSno
ProkaryotaPseudomonas MonteiliiMR-VP brothGS-MSno
ProkaryotaPseudomonas PutidaNBGS-MSno
ProkaryotaPseudomonas RhodesiaeMR-VP brothGS-MSno
ProkaryotaPseudomonas TaiwanensisNBGS-MSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaBacillus Sp.n/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaAlcaligenes Faecalisn/an/ano
ProkaryotaArthrobacter Nitroguajacolicusn/an/ano
ProkaryotaLysobacter Gummosusn/an/ano
ProkaryotaSporosarcina Ginsengisolin/an/ano
ProkaryotaPseudomonas SimiaeNutrient broth; King's B agarGC/MSno
ProkaryotaPseudomonas PutidaLuria Bertani AgarSolvent extraction with hexane, GC/MSno
ProkaryotaEnterobacter Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
Cyberlindnera Fabianiituna cooking liquidHS-SPME-GC/MSno
Lactobacillus Plantarumtuna cooking liquidHS-SPME-GC/MSno


Heptacosane

Mass-Spectra

Compound Details

Synonymous names
HEPTACOSANE
593-49-7
n-Heptacosane
VP371W2GJS
Heptacosane; n-Heptacosane
UNII-VP371W2GJS
EINECS 209-792-4
n-Heptacosane 100 microg/mL in Hexane
AI3-36283
QSPL 047
QSPL 073
Heptacosane, analytical standard
DTXSID6058637
CHEBI:32941
HSDB 8357
CH3-[CH2]25-CH3
Heptacosane, >=98.0% (GC)
LMFA11000574
MFCD00009862
AKOS016013111
LS-15223
CS-0314668
H0017
NS00010782
C16045
Q151028
4557DE11-D8CE-461B-BBA4-5A5BBDA1A670
Microorganism:

Yes

IUPAC nameheptacosane
SMILESCCCCCCCCCCCCCCCCCCCCCCCCCCC
InchiInChI=1S/C27H56/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-26-24-22-20-18-16-14-12-10-8-6-4-2/h3-27H2,1-2H3
FormulaC27H56
PubChem ID11636
Molweight380.7
LogP14.2
Atoms27
Bonds24
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes saturated hydrocarbons
CHEBI-ID32941
Supernatural-IDSN0027414

mVOC Specific Details

Boiling Point
DegreeReference
442 deg CHaynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-288
Volatilization
The Henry's Law constant for heptacosane is estimated as 655 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that heptacosane is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 5.7 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 7.7 days(SRC). Heptacosane's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The volatilization half-life from a model pond is greater than 2 years when adsorption is considered. Heptacosane is not expected to volatilize from dry soil surfaces(SRC) based upon an extrapolated vapor pressure of 2.81X10-7 mm Hg at 25 deg C(3).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 8, 2016: http://www2.epa.gov/tsca-screening-tools (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Perry RH, Green D; Perry's Chemical Handbook. Physical and Chemical data. 6th ed., New York, NY: McGraw-Hill (1984)
Solubility
In water, 2.8X10-9 mg/L at 25 deg C (est)
Literature: US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 10, 2016: http://www2.epa.gov/tsca-screening-tools
Literature: #Insoluble in water
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-288
Literature: #Insoluble in ethanol; slightly soluble in ether
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-288
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of heptacosane can be estimated to be 3.9X10+7(SRC). According to a classification scheme(2), this estimated Koc value suggests that heptacosane is expected to be immobile in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 8, 2016: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
2.8X10-9 mg/L at 25 deg C (extrapolated)Perry RH, Green D; Perry's Chemical Handbook. Physical and Chemical data. New York, NY: McGraw-Hill 6th ed (1984)
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaeAntifungalrhizosphereJishma et al. 2017
EukaryotaTuber Mesentericumn/aFortywoodland of the Basilicata regionMauriello et al. 2004
ProkaryotaBacillus Megateriumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Brassicacearumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
Staphylococcus AureusWang et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
ProkaryotaPseudomonas RhodesiaeMR-VP brothGS-MSno
EukaryotaTuber Mesentericumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
ProkaryotaBacillus MegateriumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas BrassicacearumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaKing's B AgarSPME-GC/MSno
Staphylococcus Aureusraw Shiyang chickenHS-GC-IMS/HS-SPME-GC-MSno


Undecane

Mass-Spectra

Compound Details

Synonymous names
Undecane
N-UNDECANE
1120-21-4
Hendecane
n-Hendecane
CCRIS 3796
Hendekan
Undekan
HSDB 5791
UNII-JV0QT00NUE
JV0QT00NUE
EINECS 214-300-6
NSC 66159
BRN 1697099
DTXSID9021689
CHEBI:46342
AI3-21126
UNDECANE, N-
NSC-66159
DTXCID301689
EC 214-300-6
4-01-00-00487 (Beilstein Handbook Reference)
Decane, methyl-
MFCD00008959
61193-21-3
Undecane, >=99%
Undecane, analytical standard
CH3-(CH2)9-CH3
CH3-[CH2]9-CH3
UND
HALPACLEAN
UN2330
undecan
Undecane, 99%
NIKKO ELACE
UNDECANE [INCI]
Undecane [UN2330] [Flammable liquid]
N-UNDECANE [HSDB]
UNII: JV0QT00NUE
CHEMBL132474
QSPL 058
n-C11H24
HY-N8593
NSC66159
Tox21_300076
LMFA11000591
AKOS005145675
MCULE-7319807036
UN 2330
NCGC00247896-01
NCGC00254001-01
LS-14030
CAS-1120-21-4
DB-041031
CS-0148678
NS00004614
U0002
Q150731
J-002689
17398EC4-D16F-42F6-8A27-60F8EC075469
InChI=1/C11H24/c1-3-5-7-9-11-10-8-6-4-2/h3-11H2,1-2H
Microorganism:

Yes

IUPAC nameundecane
SMILESCCCCCCCCCCC
InchiInChI=1S/C11H24/c1-3-5-7-9-11-10-8-6-4-2/h3-11H2,1-2H3
FormulaC11H24
PubChem ID14257
Molweight156.31
LogP5.6
Atoms11
Bonds8
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID46342
Supernatural-IDSN0333997

mVOC Specific Details

Boiling Point
DegreeReference
195.9 °C peer reviewed
Volatilization
The Henry's Law constant for n-undecane is estimated as 6.1 atm-cu m/mole(SRC) derived from its vapor pressure, 0.412 mm Hg(1), and water solubility, 0.014 mg/L(2). This Henry's Law constant indicates that n-undecane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3.6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 5 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is about 1 month if adsorption is considered(4). n-Undecane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Undecane is not expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1999) (2) Shaw DG; Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C8 to C36. International Union of Pure and Applied Chemistry. Solubility Data Series. Vol 38 p. 326 (1989) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington,DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) USEPA; EXAMS II Computer Simulation (1987)
Solubility
In water, 0.014 mg/L at 25 deg (critical evaluation of all available data)
Literature: Shaw DG; Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C8 to C36. International Union of Pure and Applied Chemistry. Solubility Data Series. Vol 38 p. 326 (1989)
Literature: #In water, 0.0044 mg/L at 25 deg C
Literature: Yalkowsky, S.H., He, Yan, Jain, P. Handbook of Aqueous Solubility Data Second Edition. CRC Press, Boca Raton, FL 2010, p. 806
Literature: #Miscible with ethyl alcohol, ether
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-544
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-undecane can be estimated to be 2,600(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-undecane is expected to have slight mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 16, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 23 (1983)
Vapor Pressure
PressureReference
0.412 mm Hg at 25 deg CDaubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1999)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaKlebsiella PneumoniaeNANAZechman et al. 1986
ProkaryotaPseudomonas AeruginosaNANAZechman et al. 1986
EukaryotaPythium OligandrumN/APythium oligandrum GAQ1 strain was isolated from soil from a field where infected ginger was growing in Laiwu district, Jinan City, Shandong Province, China. China General Microbiological Culture Collection Center (CGMCC) deposit number No. 17470.Sheikh et al. 2023
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas MonteiliiPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas TaiwanensisPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas ProtegensNAMannaa et al. 2018
ProkaryotaPseudomonas Azotoformansstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaStaphylococcus EpidermidisAmerican Type Culture CollectionJenkins and Bean 2020
EukaryotaTrichoderma VirideNAHung et al. 2013
ProkaryotaBacillus Amyloliquefaciensn/aNALee et al. 2012
ProkaryotaBacillus Subtilisn/aNALee et al. 2012
ProkaryotaPaenibacillus Polymyxan/aNALee et al. 2012
EukaryotaFusarium Graminearumn/aNABusko et al. 2014
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaSerratia Sp.n/aNABruce et al. 2004
EukaryotaSaccharomyces Cerevisiaen/aNABruce et al. 2004
ProkaryotaPseudomonas Putidan/aNABlom et al. 2011
ProkaryotaBacillus Pumiluspromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaBacillus Subtilistriggers induced systemic resistance (ISR) in ArabidopsisnaRyu et al. 2004
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaKlebsiella PneumoniaeTSBTD/GC-MSno
ProkaryotaPseudomonas AeruginosaTSBTD/GC-MSno
EukaryotaPythium OligandrumV8 juice agarSPME/GC-MS/MSno
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas MonteiliiMR-VP brothGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
ProkaryotaPseudomonas TaiwanensisNBGS-MSno
ProkaryotaPseudomonas Protegenstryptic soy broth (TSB)gastight syringe, GC-MSno
ProkaryotaPseudomonas AzotoformansM+S (Murashige and Skoog) mediaSPME/GC-MSno
ProkaryotaStaphylococcus EpidermidisBHI media, LB mediaHS-SPME/GC×GC-TOFMSno
EukaryotaTrichoderma VirideMalt extract agar Headspace volatiles collected with colomn/TD-GC-MSyes
ProkaryotaBacillus AmyloliquefaciensTryptic soy agarSPME coupled with GC-MSno
ProkaryotaBacillus SubtilisTryptic soy agarSPME coupled with GC-MSno
ProkaryotaPaenibacillus PolymyxaTryptic soy agarSPME coupled with GC-MSno
EukaryotaFusarium Graminearumyeast extract sucrose agarSPME/GC-MSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaSerratia Sp.n/an/ano
EukaryotaSaccharomyces Cerevisiaen/an/ano
ProkaryotaPseudomonas PutidaMSHeadspace air was trapped in glass Gerstel TDS tubes and analysed by gas chromatography with mass selective detection (GC-MSD)no
ProkaryotaBacillus PumilusTSASPME-GCno
ProkaryotaBacillus SubtilisMurashige and Skoog mediumcapillary GC;GC/MSyes
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno


Heptadecane

Mass-Spectra

Compound Details

Synonymous names
HEPTADECANE
n-Heptadecane
629-78-7
Heptadekan
n-Heptadecane (d36)
H7C0J39XUM
DTXSID7047061
CHEBI:16148
MFCD00009002
NSC-172782
Hexadecane, methyl-
Heptadecane, analytical standard
EINECS 211-108-4
UNII-H7C0J39XUM
NSC 172782
BRN 1738898
AI3-36898
Heptadecane purum
Normal-heptadecane
PJ8
Heptadecane, 99%
Analytical Reagent,95.0%
4-01-00-00548 (Beilstein Handbook Reference)
CHEMBL3185332
DTXCID5027061
Samarium(III)ChlorideHexahydrate
HSDB 8347
CH3-[CH2]15-CH3
Tox21_302278
LMFA11000003
NSC172782
STL355860
AKOS000487450
MCULE-3718944215
Heptadecane, purum, >=98.0% (GC)
NCGC00256101-01
AS-56326
CAS-629-78-7
DB-054356
CS-0197341
H0023
NS00012511
C01816
D97702
Heptadecane; NSC 172782; TS 7; n-Heptadecane
Q150888
43B472DE-3A6B-4855-8457-9D679B0D1C87
InChI=1/C17H36/c1-3-5-7-9-11-13-15-17-16-14-12-10-8-6-4-2/h3-17H2,1-2H
Microorganism:

Yes

IUPAC nameheptadecane
SMILESCCCCCCCCCCCCCCCCC
InchiInChI=1S/C17H36/c1-3-5-7-9-11-13-15-17-16-14-12-10-8-6-4-2/h3-17H2,1-2H3
FormulaC17H36
PubChem ID12398
Molweight240.5
LogP8.8
Atoms17
Bonds14
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID16148
Supernatural-IDSN0242409

mVOC Specific Details

Boiling Point
DegreeReference
303 °C peer reviewed
Volatilization
The Henry's Law constant for heptadecane is estimated as 3.1X10-2 atm-cu m/mole(SRC) derived from its vapor pressure, 2.28X10-4 mm Hg(1), and water solubility, 2.3X10-3 mg/L(2). This Henry's Law constant indicates that heptadecane is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(4) is estimated as 1.6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(4) is estimated as 6.2 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is greater than 2 years if adsorption is considered(5). Heptadecane's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Heptadecane is not expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) WakehamSG et al; Canadian J Fish Aquat Sci 40: 304-21 (1983) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 14, 2016: http://www2.epa.gov/tsca-screening-tools (5) US EPA; EXAMS II Computer Simulation (1987)
Solubility
In water, 2.3X10-3 mg/L at 25 deg C
Literature: Wakeham SG ET al; Canadian J Fish Aqua Sci 40: 304-21 (1983)
Literature: #Insoluble in water
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-388
Literature: #Slightly soluble in ethanol, carbon tetrachloride; soluble in ethyl ether
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-288
Soil Adsorption
The Koc of heptadecane is 2.5X10+5(1). According to a classification scheme(2), this Koc value suggests that heptadecane is expected to be immobile in soil.
Literature: (1) Wakeham SG et al; Canadian J Fish Aqua Sc 40: 304-21 (1983) (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
2.28X10-4 mm Hg at 25 deg CDaubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaAspergillus NigerNANACosta et al. 2016
EukaryotaCandida AlbicansNANACosta et al. 2016
EukaryotaPenicillium ChrysogenumNANACosta et al. 2016
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas FluorescensPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas PutidaPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas TaiwanensisPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaStaphylococcus AureusNAKarami et al. 2017
EukaryotaFusarium CulmorumNASchmidt et al. 2018
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
EukaryotaCandida AlbicansATCC MYA-2876, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida GlabrataATCC 90030, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida TropicalisATCC 750, American Type Culture CollectionCosta et al. 2020
ProkaryotaErwinia Amylovoraenhances Arabidopsis thaliana shoot and root growthbacterial collection of the LabParmagnani et al. 2023
ProkaryotaCyanobacteria Sp.n/aNASchulz and Dickschat 2007
ProkaryotaCalothrix Parietinan/aNAHoeckelmann et al. 2004
ProkaryotaCalothrix Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaPlectonema Notatumn/aNAHoeckelmann et al. 2004
ProkaryotaPlectonema Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaPhormidium Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaTolypothrix Distortan/aNAHoeckelmann et al. 2004
ProkaryotaRivularia Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaBacillus Megateriumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Brassicacearumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Simiaenarhizosphere of a soybean field in the province of Rajasthan, IndiaVaishnav et al. 2016
ProkaryotaPseudomonas Putidanablack pepper rootSheoran et al. 2015
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaAspergillus NigerYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaCandida AlbicansYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaPenicillium ChrysogenumYeast Glucose ChloramphenicolSPME/GCxGC-MSno
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas FluorescensMR-VP brothGS-MSno
ProkaryotaPseudomonas PutidaNBGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
ProkaryotaPseudomonas RhodesiaeMR-VP brothGS-MSno
ProkaryotaPseudomonas TaiwanensisMR-VP brothGS-MSno
ProkaryotaStaphylococcus AureusMueller Hinton broth (MB), tryptic soy broth (TSB)SPME, DVB/CAR/PDMS, GC-MSno
EukaryotaFusarium CulmorumKing`s B agarUPLC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
EukaryotaCandida AlbicansYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida GlabrataYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida TropicalisYGC mediaHS-SPME/GC-GC-ToFMSno
ProkaryotaErwinia AmylovoraSBSE/GC-MSno
ProkaryotaCyanobacteria Sp.n/an/ano
ProkaryotaCalothrix Parietinan/an/ano
ProkaryotaCalothrix Sp.n/an/ano
ProkaryotaPlectonema Notatumn/an/ano
ProkaryotaPlectonema Sp.n/an/ano
ProkaryotaPhormidium Sp.n/an/ano
ProkaryotaTolypothrix Distortan/an/ano
ProkaryotaRivularia Sp.n/an/ano
ProkaryotaBacillus MegateriumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas BrassicacearumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas SimiaeNutrient broth; King's B agarGC/MSno
ProkaryotaPseudomonas PutidaLuria Bertani AgarSolvent extraction with dichloro methane, GC/MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno


Hexadecane

Mass-Spectra

Compound Details

Synonymous names
HEXADECANE
n-Hexadecane
544-76-3
Cetane
n-Cetane
Hexadekan
Cetan
Zetan
CCRIS 5833
HSDB 6854
F8Z00SHP6Q
NSC 7334
EINECS 208-878-9
BRN 1736592
AI3-06522
UNII-F8Z00SHP6Q
MFCD00008998
DTXSID0027195
CHEBI:45296
HEXADECANE, N-
NSC-7334
PARAFOL 16-97
DTXCID607195
Hexadecane-1-D 98 atom % d
EC 208-878-9
4-01-00-00537 (Beilstein Handbook Reference)
hexadecan
Pentadecane, methyl-
Hexadecane, analytical standard
CH3-(CH2)14-CH3
CH3-[CH2]14-CH3
CNS
Hexadecane; Cetane; NSC 7334; S 6 (alkane); n-Cetane; n-Hexadecane
Hexadecane solution
n-Hexadecane 10 microg/mL in Acetone
Hexadecane, >=99%
HEXADECANE [HSDB]
HEXADECANE [INCI]
Hexadecane, p.a., 99%
UNII: F8Z00SHP6Q
Hexadecane_RamanathanGurudeeban
CHEMBL134994
QSPL 025
QSPL 078
QSPL 116
Hexadecane, anhydrous, >=99%
NSC7334
Hexadecane, ReagentPlus(R), 99%
Tox21_300485
LMFA11000577
STL453674
AKOS025212855
Hexadecane, purum, >=98.0% (GC)
NCGC00164132-01
NCGC00164132-02
NCGC00254306-01
AS-56424
CAS-544-76-3
SY010655
DB-052582
Hexadecane, Vetec(TM) reagent grade, 98%
CS-0152222
H0066
NS00009955
S0288
D97389
A830206
Q150843
5166841B-BF92-4A7D-8CEF-0B01B374ED0E
InChI=1/C16H34/c1-3-5-7-9-11-13-15-16-14-12-10-8-6-4-2/h3-16H2,1-2H
Microorganism:

Yes

IUPAC namehexadecane
SMILESCCCCCCCCCCCCCCCC
InchiInChI=1S/C16H34/c1-3-5-7-9-11-13-15-16-14-12-10-8-6-4-2/h3-16H2,1-2H3
FormulaC16H34
PubChem ID11006
Molweight226.44
LogP8.3
Atoms16
Bonds13
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID45296
Supernatural-IDSN0061743

mVOC Specific Details

Boiling Point
DegreeReference
286.9 °C peer reviewed
Volatilization
The Henry's Law constant for hexadecane is estimated as 21 atm-cu m/mole(SRC) derived from its vapor pressure, 0.00149 mm Hg(1), and water solubility, 2.1X10-5 mg/L(2). This Henry's Law constant indicates that hexadecane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 4 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 6 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is approximately 24 months if adsorption is considered(4). n-Hexadecane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Hexadecane is not expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Dhemicals: Data Compilation. Design Institute for Physical Property Data, American Institute of Chemical Engineers. Taylor & Francis, Washington, DC (1999) (2) Coates M et al; Environ Sci Technol 19: 628-32 (1985) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of hexadecane can be estimated to be 53,000(SRC). According to a classification scheme(2), this estimated Koc value suggests that hexadecane is expected to be immobile in soil(SRC). From the experimental value of Freundlich adsorption constants and organic carbon contents in three Canadian soils (Wendover 16.2% OC; Vaudreil 10.0% OC; Grimsby 1.0% OC)(3), Koc values can be estimated to be in the range of approximately 50-400(SRC). The experimental data of other investigators suggest that less than 20% of hexadecane from solution is adsorbed in soil, sludge and sediment(4-6). However, in all the adsorption experiments(3-6), the concentration of hexadecane solution used for the adsorption study far exceeded the aqueous solubility of hexadecane making the results questionable(SRC).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 17, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 23 (1983) (3) Nathwani JS, Phillips CR; Chemosphere 6: 157-62 (1977) (4) Meyers PA, Quinn JG; Nature 244: 23-4 (1973) (5) Kanatharana P, Grob RL; J Environ Sci Health A18: 59-77 (1985) (6) Lee RF; pp. 611-6 in Proc 1977 Oil Spill Conf. New Orleans, LA: American Petroleum Institute (1977)
Vapor Pressure
PressureReference
0.00149 mm Hg at 25 deg CDaubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1999)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaAspergillus NigerNANACosta et al. 2016
EukaryotaCandida AlbicansNANACosta et al. 2016
EukaryotaPenicillium ChrysogenumNANACosta et al. 2016
ProkaryotaEscherichia ColiNANADixon et al. 2022
EukaryotaPythium OligandrumN/APythium oligandrum GAQ1 strain was isolated from soil from a field where infected ginger was growing in Laiwu district, Jinan City, Shandong Province, China. China General Microbiological Culture Collection Center (CGMCC) deposit number No. 17470.Sheikh et al. 2023
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas FluorescensPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
EukaryotaFusarium CulmorumNASchmidt et al. 2018
EukaryotaPleurotus OstreatusAgriculture Research Center, Giza, EgyptHamad et al. 2022
ProkaryotaBacillus Subtilisantibacterial activity against growth of Ralstonia solanacearumPlant Bacteriology Lab, Division of Plant Pathology, Indian Council of Agricultural Research - Indian Agricultural Research Institute, New DelhiKashyap et al. 2022
ProkaryotaPseudomonas Fluorescensantibacterial activity against growth of Ralstonia solanacearumPlant Bacteriology Lab, Division of Plant Pathology, Indian Council of Agricultural Research - Indian Agricultural Research Institute, New DelhiKashyap et al. 2022
ProkaryotaBacillus Amyloliquefaciensstimulate growth of Solanum tuberosumcommercial strainHeenan-Daly et al. 2021
ProkaryotaBacillus Toyonensisisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaBacillus Mycoidesstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaSerratia Fonticolastimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaSerratia Myotisstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaPseudomonas Azotoformansstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaBacillus Cereuspromote fungal hypocrellin A production in Shiraia sp. S9isolate and deposite at the China General Microbiological Culture Collection Center (CGMCC)Xu et al. 2022
ProkaryotaCyanobacteria Sp.n/aNASchulz and Dickschat 2007
ProkaryotaBacillus Simplexn/aNAGu et al. 2007
ProkaryotaBacillus Subtilisn/aNAGu et al. 2007
ProkaryotaBacillus Weihenstephanensisn/aNAGu et al. 2007
ProkaryotaMicrobacterium Oxydansn/aNAGu et al. 2007
ProkaryotaStenotrophomonas Maltophilian/aNAGu et al. 2007
ProkaryotaStreptomyces Lateritiusn/aNAGu et al. 2007
ProkaryotaSerratia Marcescensn/aNAGu et al. 2007
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
EukaryotaFusarium Graminearumn/aNABusko et al. 2014
ProkaryotaArthrobacter Agilisnarhizosphere of maize plantsVelázquez-Becerra et al. 2011
ProkaryotaBacillus Megateriumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
ProkaryotaBacillus SubtilisNANALee et al. 2023
Saccharomyces CerevisiaeQin et al. 2024
Staphylococcus AureusWang et al. 2023
Pediococcus AcidilacticiMockus et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaAspergillus NigerYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaCandida AlbicansYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaPenicillium ChrysogenumYeast Glucose ChloramphenicolSPME/GCxGC-MSno
ProkaryotaEscherichia ColiLBTD/GC-MSno
EukaryotaPythium OligandrumV8 juice agarSPME/GC-MS/MSyes
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas FluorescensMR-VP brothGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
EukaryotaFusarium CulmorumKing`s B agarUPLC-MSno
EukaryotaPleurotus OstreatusGC-MSno
ProkaryotaBacillus SubtilisLB agarGC-MSno
ProkaryotaPseudomonas FluorescensLB agarGC-MSno
ProkaryotaBacillus AmyloliquefaciensMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaBacillus ToyonensisTSB mediaSPME/GC-MSno
ProkaryotaBacillus MycoidesMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaSerratia FonticolaMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaSerratia MyotisMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaPseudomonas AzotoformansM+S (Murashige and Skoog) mediaSPME/GC-MSno
ProkaryotaBacillus CereusLB agarHS-SPME/GC-MSyes
ProkaryotaCyanobacteria Sp.n/an/ano
ProkaryotaBacillus Simplexn/an/ano
ProkaryotaBacillus Subtilisn/an/ano
ProkaryotaBacillus Weihenstephanensisn/an/ano
ProkaryotaMicrobacterium Oxydansn/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaStreptomyces Lateritiusn/an/ano
ProkaryotaSerratia Marcescensn/an/ano
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
EukaryotaFusarium Graminearumyeast extract sucrose agarSPME/GC-MSno
ProkaryotaArthrobacter AgilisLB mediumSPME-GC/MSno
ProkaryotaBacillus MegateriumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaKing's B AgarSPME-GC/MSno
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaBacillus SubtilisTryptone soy broth (TSB)HPLCno
Saccharomyces Cerevisiaefermentation of mulberry wineHS-SPME-GC-MSno
Staphylococcus Aureusraw Shiyang chickenHS-GC-IMS/HS-SPME-GC-MSno
Pediococcus Acidilacticilentils (Lens culinaris)SPME/ICP-MSno


Tetradecane

Mass-Spectra

Compound Details

Synonymous names
Tetradecane
629-59-4
N-TETRADECANE
Tetradecane, N-
CCRIS 715
Tetradekan
HSDB 5728
EINECS 211-096-0
NSC 72440
BRN 1733859
DTXSID1027267
UNII-03LY784Y58
CHEBI:41253
AI3-04240
MFCD00008986
NSC-72440
03LY784Y58
DTXCID707267
90622-46-1
EC 211-096-0
4-01-00-00520 (Beilstein Handbook Reference)
74664-93-0
Tridecane, methyl-
Tetradecane, analytical standard
CH3-(CH2)12-CH3
CH3-[CH2]12-CH3
Tetradecane olefine
EINECS 292-448-0
Tetradecane, 99%
n-Tetradecane 10 microg/mL in Hexane
Tetradecane, >=99%
TETRADECANE [INCI]
N-TETRADECANE [HSDB]
Tetradecane_GurudeebanSatyavani
CHEMBL135488
DTXSID101022622
NSC72440
Tox21_303277
LMFA11000586
STL280540
AKOS004910010
HY-W094846
MCULE-7442374993
NCGC00257151-01
AS-56340
CAS-629-59-4
SY010359
DB-054348
CS-0146758
NS00010784
T0079
Tetradecane, olefine free, >=99.0% (GC)
G68413
Q150808
C72FCDE9-545A-4C7D-9907-1DFACCF43A82
Tetradecane, certified reference material, TraceCERT(R)
Microorganism:

Yes

IUPAC nametetradecane
SMILESCCCCCCCCCCCCCC
InchiInChI=1S/C14H30/c1-3-5-7-9-11-13-14-12-10-8-6-4-2/h3-14H2,1-2H3
FormulaC14H30
PubChem ID12389
Molweight198.39
LogP7.2
Atoms14
Bonds11
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID41253
Supernatural-IDSN0024723

mVOC Specific Details

Boiling Point
DegreeReference
253.57 °C peer reviewed
Volatilization
The Henry's Law constant for n-tetradecane is estimated as 11.9 atm-cu m/mole(SRC) derived from its vapor pressure, 0.015 mm Hg(1), and water solubility, 0.00033 mg/L(2). This Henry's Law constant indicates that n-tetradecane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 4 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 5.6 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is 28 months if adsorption is considered(4). n-Tetradecane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Tetradecane is not expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC).
Literature: (1) Haynes WM, ed; CRC Handbook of Chemistry and Physics. 95th ed. Boca Raton, FL: CRC Press LLC, p. 15-21 (2014) (2) Coates M et al; Environ Sci Technol 19: 628-32 (1985) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987)
Solubility
In water, 3.3X10-4 mg/L at 25 deg C
Literature: Coates M et al; Environ Sci Technol 19: 628-32 (1985)
Literature: #Very soluble in ether; soluble in carbon tetrachloride
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-498
Literature: #Soluble in alcohol
Literature: Lewis, R.J. Sr.; Hawley's Condensed Chemical Dictionary 15th Edition. John Wiley & Sons, Inc. New York, NY 2007., p. 1218
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-tetradecane can be estimated to be 16,000(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-tetradecane is expected to be immobile in soil. Laboratory soil column elution experiments showed that the percent of n-tetradecane adsorbed to three different native soil types ranged from 2.2-5.98%(3).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 11, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 23 (1983) (3) Kanatharana P, Grob RL; J Environ Sci Health A18: 59-77 (1983)
Vapor Pressure
PressureReference
0.015 mm Hg at 25 deg CHaynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 15-21
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaAcinetobacter BaumanniiNANAGao et al. 2016
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaPseudomonas AeruginosaNANANeerincx et al. 2016
EukaryotaPythium OligandrumN/APythium oligandrum GAQ1 strain was isolated from soil from a field where infected ginger was growing in Laiwu district, Jinan City, Shandong Province, China. China General Microbiological Culture Collection Center (CGMCC) deposit number No. 17470.Sheikh et al. 2023
ProkaryotaPseudomonas MonteiliiPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaEscherichia ColiNAKarami et al. 2017
ProkaryotaPseudomonas Sp.antifungal activity against Thielaviopsis ethacetica mycelial growthBrazilian Biorenewables National Laboratory – LNBR/CNPEM Microorganism Collection, Campinas, SP; isolatedfrom soil and roots of highly productive sugarcane-producing regions; BrazilFreitas et al. 2022
ProkaryotaEscherichia ColiLeibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHFitzgerald et al. 2020
ProkaryotaPaenibacillus Polymyxaantifungal effects against Rhizopus stoloniferisolated from an ancient tree Cryptomeria fortune and deposited in China General Microbiological Culture Collection Center (CGMCC No. 15733)Wu et al. 2020
ProkaryotaErwinia Amylovoraenhances Arabidopsis thaliana shoot and root growthbacterial collection of the LabParmagnani et al. 2023
EukaryotaFusarium Graminearumn/aNABusko et al. 2014
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaBacillus Simplexn/aNAGu et al. 2007
ProkaryotaBacillus Subtilisn/aNAGu et al. 2007
ProkaryotaBacillus Weihenstephanensisn/aNAGu et al. 2007
ProkaryotaMicrobacterium Oxydansn/aNAGu et al. 2007
ProkaryotaStenotrophomonas Maltophilian/aNAGu et al. 2007
ProkaryotaStreptomyces Lateritiusn/aNAGu et al. 2007
ProkaryotaSerratia Marcescensn/aNAGu et al. 2007
EukaryotaTuber Borchiin/aFortywoodland of the Basilicata regionMauriello et al. 2004
ProkaryotaPseudomonas Simiaenarhizosphere of a soybean field in the province of Rajasthan, IndiaVaishnav et al. 2016
ProkaryotaPseudomonas Putidanablack pepper rootSheoran et al. 2015
EukaryotaTuber MelanosporumNoneT. melanosporum, T. borchii were collected from northern Italy (Piedmont) and T. indicum from Yunnan and Sichuan Provinces (China). Splivallo et al. 2007b
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
EukaryotaSaccharomyces CerevisiaeNANAHarris et al. 2021
EukaryotaSaccharomyces EubayanusNANAMardones et al. 2022
Saccharomyces CerevisiaeJi et al. 2024
Lactobacillus PlantarumMa et al. 2023
Citrobacter FreundiiTallon et al. 2023
Enterobacter AgglomeransTallon et al. 2023
Enterobacter CloacaeTallon et al. 2023
Klebsiella OxytocaTallon et al. 2023
Staphylococcus AureusWang et al. 2023
Pediococcus AcidilacticiMockus et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaAcinetobacter BaumanniiBacT/ALERT SASPME/GC-MSno
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaPseudomonas AeruginosaBrain Heart InfusionTD/GC-MSno
EukaryotaPythium OligandrumV8 juice agarSPME/GC-MS/MSno
ProkaryotaPseudomonas MonteiliiMR-VP brothGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
ProkaryotaEscherichia ColiMueller Hinton broth (MB), tryptic soy broth (TSB)SPME, DVB/CAR/PDMS, GC-MSno
ProkaryotaPseudomonas Sp.LB mediaHS-SPME/GC-MSno
ProkaryotaEscherichia ColiTSB mediaHS-SPME/GC-MSno
ProkaryotaPaenibacillus PolymyxaLB agar and M49 (minimal) mediaSPME/GC-MSno
ProkaryotaErwinia AmylovoraSBSE/GC-MSno
EukaryotaFusarium Graminearumyeast extract sucrose agarSPME/GC-MSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaBacillus Simplexn/an/ano
ProkaryotaBacillus Subtilisn/an/ano
ProkaryotaBacillus Weihenstephanensisn/an/ano
ProkaryotaMicrobacterium Oxydansn/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaStreptomyces Lateritiusn/an/ano
ProkaryotaSerratia Marcescensn/an/ano
EukaryotaTuber Borchiin/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
ProkaryotaPseudomonas SimiaeNutrient broth; King's B agarGC/MSno
ProkaryotaPseudomonas PutidaLuria Bertani AgarSolvent extraction with hexane, GC/MSno
EukaryotaTuber MelanosporumNoneNoneyes
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
EukaryotaSaccharomyces Cerevisiaemalt extract brothHS-SPME with GC-MSno
EukaryotaSaccharomyces EubayanusYPD agar media (yeast extract 1%, peptone 2%, glucose 2% and agar 2%)HS‐SPME‐GC‐MSno
Saccharomyces CerevisiaeSauce Meat during StorageSPME–GC–MSno
Lactobacillus Plantarumtuna cooking liquidHS-SPME-GC/MSno
Citrobacter Freundiitryptone soya broth (TSB) mediaTenax/GC/MSno
Enterobacter Agglomeranstryptone soya broth (TSB) mediaTenax/GC/MSno
Enterobacter Cloacaetryptone soya broth (TSB) mediaTenax/GC/MSno
Klebsiella Oxytocatryptone soya broth (TSB) mediaTenax/GC/MSno
Staphylococcus Aureusraw Shiyang chickenHS-GC-IMS/HS-SPME-GC-MSno
Pediococcus Acidilacticilentils (Lens culinaris)SPME/ICP-MSno


Octadecane

Mass-Spectra

Compound Details

Synonymous names
OCTADECANE
n-Octadecane
593-45-3
Octadecan
Oktadekan
UNII-N102P6HAIU
N102P6HAIU
CCRIS 681
1-(4-Chlorophenyl)-1,3-dihydro-2H-indol-2-one
TS Paraffin TS 8
NSC 4201
NSC-4201
EINECS 209-790-3
128271-18-1
AI3-06523
DTXSID9047172
CHEBI:32926
HSDB 8348
EC 209-790-3
CACTUS NORMAL PARAFFIN TS 8
Octadecane, 99%
MFCD00009007
Octadecane, analytical standard
CH3-(CH2)16-CH3
CH3-[CH2]16-CH3
Octadecane, n-
OCTADECANE [INCI]
DTXCID7027172
NSC4201
HY-N6600
LMFA11000581
AKOS015903064
MCULE-2392852814
Octadecane, purum, >=97.0% (GC)
AS-56224
CS-0034329
NS00010781
O0003
Q150900
379E5588-B955-4C35-88E0-21E7DF38DE0E
InChI=1/C18H38/c1-3-5-7-9-11-13-15-17-18-16-14-12-10-8-6-4-2/h3-18H2,1-2H
Microorganism:

Yes

IUPAC nameoctadecane
SMILESCCCCCCCCCCCCCCCCCC
InchiInChI=1S/C18H38/c1-3-5-7-9-11-13-15-17-18-16-14-12-10-8-6-4-2/h3-18H2,1-2H3
FormulaC18H38
PubChem ID11635
Molweight254.5
LogP9.3
Atoms18
Bonds15
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID32926
Supernatural-IDSN0339363

mVOC Specific Details

Boiling Point
DegreeReference
316 °C peer reviewed
Volatilization
The Henry's Law constant for octadecane is estimated as 1.9X10-2 atm-cu m/mole(1) from its vapor pressure, 3.41X10-4 mm Hg(2), and water solubility, 6.0X10-3 mg/L(3). This Henry's Law constant indicates that octadecane is expected to volatilize rapidly from water surfaces(4). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(1) is estimated as 1.7 hours hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(1) is estimated as 6.3 days(SRC). However, adsorption to suspended solids and sediment is expected to attenuate volatilization(SRC). The estimated volatilization half-life from a model pond is greater than 2 years if adsorption is considered(5). Octadecane has a vapor pressure of 3.41X10-4 mm Hg and exists as a liquid under environmental conditions; therefore, octadecane may volatilize from dry soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 9, 2016: http://www2.epa.gov/tsca-screening-tools (2) Jensen TS; PhD Thesis: Petroleum hydrocarbons: compositional changes during biodegradation and transport in unsaturated soil. Roskilde, Denmark: Ministry of the Environment and Energy, National Environmental Research (1994) (3) Yalkowsky SH, et al; Handbook of Aqueous Solubility Data. 2nd ed., Boca Raton, FL: CRC Press p. 1184 (2010) (4) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (5) US EPA; EXAMS II Computer Simulation (1987)
Soil Adsorption
The Koc of octadecane is 2.2X10+7(1). According to a classification scheme(2), this Koc value suggests that octadecane is expected to be immobile in soil.
Literature: (1) Jensen TS; PhD Thesis: Petroleum hydrocarbons: compositional changes during biodegradation and transport in unsaturated soil. Roskilde, Denmark: Ministry of the Environment and Energy, National Environmental Research (1994) (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
3.41X10-4 mm Hg at 25 deg CPerry RH, Green D; Perry's Chemical Handbook. Physical and Chemical Data. 6th ed., New York, NY: McGraw Hill (1984)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
EukaryotaFusarium CulmorumNASchmidt et al. 2018
ProkaryotaBacillus Sp.antifungal activity against Fusarium solaniRhizosphere soil of avocadoGuevara-Avendaño et al. 2019
ProkaryotaStreptomyces Philanthiantifungal activity against Aspergillus parasiticus TISTR 3276 and Aspergillus flavus PSRDC-4NABoukaew and Prasertsan 2020
ProkaryotaStreptococcus Mutans as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
ProkaryotaAzospirillum Brasilensepromotion of performance of Chlorella sorokiniana Shihculture collection DSMZ 1843Amavizca et al. 2017
ProkaryotaBacillus Pumiluspromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaEscherichia Colipromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaPseudomonas Brassicacearumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
ProkaryotaAchromobacter Sp.NANAAlmeida et al. 2022
ProkaryotaBacillus SubtilisNANALee et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
EukaryotaFusarium CulmorumKing`s B agarUPLC-MSno
ProkaryotaBacillus Sp.LB agarSPME-GC-MSno
ProkaryotaStreptomyces Philanthisterile wheat seedsGC-MSno
ProkaryotaStreptococcus MutansBrain-Heart-Infusion agarTenax-trap/GC-MSno
ProkaryotaAzospirillum BrasilenseTSASPME-GCno
ProkaryotaBacillus PumilusTSASPME-GCno
ProkaryotaEscherichia ColiTSASPME-GCno
ProkaryotaPseudomonas BrassicacearumKing's B AgarSPME-GC/MSno
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
ProkaryotaAchromobacter Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
ProkaryotaBacillus SubtilisTryptone soy broth (TSB)HPLCno