Results for:
Species: Penicillium digitatum

Prop-1-ene

Mass-Spectra

Compound Details

Synonymous names
PROPYLENE
Propene
prop-1-ene
1-Propene
Methylethylene
Methylethene
1-Propylene
115-07-1
Propene, pure
NCI-C50077
CCRIS 1356
HSDB 175
UNII-AUG1H506LY
EINECS 204-062-1
AUG1H506LY
CH2=CH-CH3
R 1270
25085-53-4
CHEBI:16052
Propene-1-13C (gas)
CH3CH=CH2
Propene (3,3,3-D3)
Propene (2.0-3.5% in Hexane)
Propene (2.0-3.5% in Heptane)
PROPYLENE (IARC)
PROPYLENE [IARC]
R-1270
MFCD00009279
MFCD00084447
UN1077
Polipropene 25
68606-26-8
EINECS 292-050-7
prop-1-en-3-yl
Propylene, >=99%
PROPYLENE [MI]
PROPYLENE [HSDB]
90530-12-4
97102-85-7
Propene (1-2% in Toluene)
CHEMBL117213
DTXSID5021205
DTXSID70941638
c0067
UN2850
AKOS009156831
UN 1077
Propylene, 99.5%, Messer(R) CANGas
NS00001068
P2816
P2817
InChI=1/C3H6/c1-3-2/h3H,1H2,2H
Propylene tetramer [UN2850] [Flammable liquid]
Q151324
1-Propene,ammoxidized,by-products from,thermal-cracked
Microorganism:

Yes

IUPAC nameprop-1-ene
SMILESCC=C
InchiInChI=1S/C3H6/c1-3-2/h3H,1H2,2H3
FormulaC3H6
PubChem ID8252
Molweight42.08
LogP1.4
Atoms3
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationunsaturated hydrocarbons alkenes
CHEBI-ID16052
Supernatural-IDSN0312517

mVOC Specific Details

Boiling Point
DegreeReference
47.68 °C peer reviewed
Volatilization
The experimental Henry's Law constant for propylene is 1.96X10-1 atm-cu m/mole(1). This Henry's Law constant indicates that propylene is expected to volatilize rapidly from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 0.7 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 3 days(SRC). Propylene's measured Henry's Law constant indicates that volatilization from moist soil surfaces will occur(SRC). The potential for volatilization of propylene from dry soil surfaces exists based upon a vapor pressure of 8690 mm Hg(3).
Literature: (1) Wasik SP, Tsang W; J Phys Chem 74: 2970-76 (1970) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989)
Soil Adsorption
The Koc of propylene is estimated as 220(SRC), using a log Kow of 1.77(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that propylene is expected to have moderate mobility in soil.
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR, consult. ed., Washington, DC: Amer Chem Soc p. 6 (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 4-9 (1990) (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
8.69X10+3 mm Hg at 25 deg C /Extrapolated/Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
Massbank-Links

Species emitting the compound
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia Colihuman bloodSIFT-MSno
ProkaryotaPseudomonas Aeruginosahuman bloodSIFT-MSno
EukaryotaFusarium OxysporumLiquid onion extract medium (LOM)SPME, GC-MSyes
EukaryotaFusarium ProliferatumLiquid onion extract medium (LOM)SPME, GC-MSyes
EukaryotaPenicillium Digitatumn/an/ano


Compound Details

Synonymous names
ETHANE
74-84-0
Bimethyl
Dimethyl
Methylmethane
Ethyl hydride
CHEBI:42266
L99N5N533T
68475-58-1
HSDB 941
EINECS 200-814-8
UN1035
UN1961
humulene oxide
UNII-L99N5N533T
C2H6
Humulene monoxide
Humulene oxide I
Humulene I epoxide
alpha-Humulene oxide
ETHANE [HSDB]
ETHANE [INCI]
ETHANE [MI]
Ethane, >=99%
Ethane, 99.99%
EC 200-814-8
Ethane, refrigerated liquid
CHEMBL135626
DTXSID6026377
DTXSID101317528
Ethane, >=99.95% (GC)
MFCD00009023
InChI=1/C2H6/c1-2/h1-2H
AKOS015915921
Ethane [UN1035] [Flammable gas]
MCULE-8677953674
UN 1035
UN 1961
Ethane, Messer(R) CANGas, 99.95%
NS00001662
NS00004342
R-170
Q52858
Q27132187
B89E451F-F83E-471B-8B27-36FC23EF5CA1
Ethane, refrigerated liquid [UN1961] [Flammable gas]
68527-16-2
Microorganism:

No

IUPAC nameethane
SMILESCC
InchiInChI=1S/C2H6/c1-2/h1-2H3
FormulaC2H6
PubChem ID6324
Molweight30.07
LogP1.3
Atoms2
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes
CHEBI-ID42266
Supernatural-IDSN0274863

mVOC Specific Details

Boiling Point
DegreeReference
88.6 °C peer reviewed
Volatilization
Ethane is a gas and therefore volatilization from soil and water is expected to be the most important fate process. The Henry's Law constant for ethane is estimated as 0.5 atm-cu m/mole(SRC) derived from its vapor pressure, 3.15X10+4 mm Hg(1), and water solubility, 60.2 mg/L(2). This Henry's Law constant indicates that ethane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 1.6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 2.2 days(SRC). Ethane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Volatilization of ethane from dry soil surfaces will occur(SRC) based upon its vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) McAuliffe C; J Phys Chem 70: 1267-75 (1966) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The Koc of ethane is estimated as 37(SRC), using a log Kow of 1.81(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that ethane is expected to have very high mobility in soil.
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR, consult. ed., Washington, DC: Amer Chem Soc p. 4 (1995) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of November 18, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
31,459 mm Hg at 25 deg C (est)Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaPenicillium Digitatumn/aNAStotzky and Schenck 1976
Aspergillus FlavusKate et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaPenicillium Digitatumn/an/ano
Aspergillus Flavusinoculated potato samplesGC-MSno


Compound Details

Synonymous names
PROPANE
n-Propane
Dimethylmethane
74-98-6
Propyl hydride
propan
Propyldihydride
Propane liquefied
A-108
Praseodymium doped ceria
Purifrigor p 3.5
HC 290
HSDB 1672
R 290
EINECS 200-827-9
CH3-CH2-CH3
INS NO.944
E944
UNII-T75W9911L6
CHEBI:32879
INS-944
T75W9911L6
130071-47-5
cerium oxide, praseodymium doped
DTXSID5026386
E-944
EC 200-827-9
PROPANE (II)
PROPANE [II]
PROPANE (MART.)
PROPANE [MART.]
Bottled gas
dimethyl methane
Propane [USAN:NF]
UN1978
C3H8
n-Propane-
Propane (NF)
Praseodymium Nanofoil
Propane, 98%
Freon 290
PROPANE [VANDF]
PROPANE [HSDB]
PROPANE [INCI]
PROPANE [FCC]
PROPANE [MI]
Propane, 99.97%
PROPANE [WHO-DD]
LPG (liquefied petroleum gas)
CHEMBL135416
DTXCID006386
QSPL 135
Propane, tank for propane torch
Ultra Thin Praseodymium Nanofoil
DTXSID60174094
IPZJQDSFZGZEOY-UHFFFAOYSA-N
AMY22280
AKOS009159189
UN 1978
Propane, 99.95%, Messer(R) CANGas
68476-49-3
68920-07-0
69430-33-7
NS00005747
InChI=1/C3H8/c1-3-2/h3H2,1-2H
C20783
D05625
Q131189
1DDB43B7-5E0D-48E4-8F15-3D3D5116098A
68475-59-2
Microorganism:

Yes

IUPAC namepropane
SMILESCCC
InchiInChI=1S/C3H8/c1-3-2/h3H2,1-2H3
FormulaC3H8
PubChem ID6334
Molweight44.1
LogP1.8
Atoms3
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes
CHEBI-ID32879
Supernatural-IDSN0015230

mVOC Specific Details

Boiling Point
DegreeReference
42.1 °C peer reviewed
Volatilization
The Henry's Law constant for propane is estimated as 7.07X10-1 atm-cu m/mole(SRC) derived from its vapor pressure, 7150 mm Hg(1), and water solubility, 62.4 mg/L(2). This Henry's Law constant indicates that propane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 41 minutes(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 2.6 days(SRC). Propane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of propane from dry soil surfaces may exist(SRC) based upon its vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) Yalkowsky SH, He Y, eds; Handbook of aqueous solubility data. Boca Raton, FL: CRC Press p. 77 (2003) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The Koc of propane is estimated as 460(SRC), using a log Kow of 2.36(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that propane is expected to have moderate mobility in soil.
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR, consult. ed., Washington, DC: Amer Chem Soc p. nn (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 4-9 (1990) (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
7150 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links

Species emitting the compound
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaPenicillium Digitatumn/an/ano
ProkaryotaRalstonia SolanacearumCasamino Acid Peptone Glucose agarSPME-GC/MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno


Compound Details

Synonymous names
ETHYLENE
Ethene
Acetene
Elayl
Olefiant gas
74-85-1
Athylen
Etileno
9002-88-4
Bicarburretted hydrogen
Liquid ethylene
Ethylene, pure
Caswell No. 436
Aethylen
Aethen
HSDB 168
C2H4
EPA Pesticide Chemical Code 041901
Liquid ethyene
EINECS 200-815-3
CH2=CH2
H2C=CH2
Ethylene (8CI)
Ethylene, compressed
UNII-91GW059KN7
Ethene (9CI)
CHEBI:18153
91GW059KN7
CARBONEUM HYDROGENISATUM
DTXSID1026378
EC 200-815-3
MFCD00084423
UN 1038
UN 1962
Plastipore
ETHYLENE (IARC)
ETHYLENE [IARC]
ETHYLENE (II)
ETHYLENE [II]
R-1150
Athylen [German]
LDPE
Eteno
Ethylene [NF]
UN1038
UN1962
Ethene, 9CI
Ethylene-d3 (gas)
ETHYLENE-CMPD
ETHYLENE [HSDB]
ETHYLENE [MI]
Ethylene, 99.99%
ETHENE (ETHYLENE)
Heavy carburetted hydrogen
Ethylene, >=99.5%
Ethylene, >=99.9%
Ethylene, compressed [UN1962] [Flammable gas]
CHEMBL117822
DTXCID605931
Ethylene, purum, >=99.9%
DTXSID00949506
CMC_13849
AKOS015915514
CARBONEUM HYDROGENISATUM [HPUS]
MCULE-9947181734
Polyethylene, low density, 500 micron
USEPA/OPP Pesticide Code: 041901
Ethylene, Messer(R) CANGas, 99.98%
Ethylene, puriss., >=99.95% (GC)
NS00013981
NS00131932
C06547
C19503
Ethylene, refrigerated liquid (cryogenic liquid)
Ethylene, compressed [UN1962] [Flammable gas]
Q151313
Q27286698
Ethylene, refrigerated liquid (cryogenic liquid) [UN1038] [Flammable gas]
87701-65-3
Microorganism:

Yes

IUPAC nameethene
SMILESC=C
InchiInChI=1S/C2H4/c1-2/h1-2H2
FormulaC2H4
PubChem ID6325
Molweight28.05
LogP1.2
Atoms2
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkenes
CHEBI-ID18153
Supernatural-IDSN0389473

mVOC Specific Details

Boiling Point
DegreeReference
103.8 °C peer reviewed
Volatilization
The Henry's Law constant for ethylene is 0.228 atm-cu m/mole(1). This Henry's Law constant indicates that ethylene is expected to volatilize rapidly from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 30 minutes(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 2 days(SRC). Ethylene's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Ethylene is expected to volatilize from dry soil surfaces(SRC) based upon an estimated vapor pressure of 5.21X10+4 mm Hg(3).
Literature: (1) Wasik SP, Tsang W; J Phys Chem 74: 2970-6 (1970) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989)
Soil Adsorption
The Koc of ethylene is estimated as 98(SRC), using a log Kow of 1.13(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that ethylene is expected to have high mobility in soil.
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR, consult. ed., Washington, DC: Amer Chem Soc p. 4 (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 4-9 (1990) (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
5.21X10+4 mm Hg at 25 deg C /Extrapolated/Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas Solanacearumn/aNAStotzky and Schenck 1976
ProkaryotaStreptomyces Sp.n/aNAStotzky and Schenck 1976
ProkaryotaClostridium Sp.n/aNAStotzky and Schenck 1976
EukaryotaCeratocystis Fimbriatan/aNAStotzky and Schenck 1976
EukaryotaPenicillium Digitatumn/aNAStotzky and Schenck 1976
EukaryotaMucor Hiemalisn/aNAStotzky and Schenck 1976
EukaryotaAspergillus Clavatusn/aNAStotzky and Schenck 1976
EukaryotaBlastomyces Dermatitidisn/aNAStotzky and Schenck 1976
EukaryotaTuber BorchiiInduce alterations in root morphology of the host Cistus incanus and the nonhost Arabidopsis (Arabidopsis thaliana ; i.e. primary root shortening, lateral root formation, root hair stimulation)NASplivallo et al. 2009
EukaryotaTuber MelanosporumInduce alterations in root morphology of the host Cistus incanus and the nonhost Arabidopsis (Arabidopsis thaliana ; i.e. primary root shortening, lateral root formation, root hair stimulation)NASplivallo et al. 2009
Aspergillus NigerKate et al. 2023
Pectobacterium CarotovorumKate et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas Solanacearumn/an/ano
ProkaryotaStreptomyces Sp.n/an/ano
ProkaryotaClostridium Sp.n/an/ano
EukaryotaCeratocystis Fimbriatan/an/ano
EukaryotaPenicillium Digitatumn/an/ano
EukaryotaMucor Hiemalisn/an/ano
EukaryotaAspergillus Clavatusn/an/ano
EukaryotaBlastomyces Dermatitidisn/an/ano
EukaryotaTuber BorchiiMalt extract agar SPME-GC-MSno
EukaryotaTuber MelanosporumMalt extract agar SPME-GC-MSno
Aspergillus Nigerinoculated potato samplesGC-MSno
Pectobacterium Carotovoruminoculated potato samplesGC-MSno


Acetylene

Mass-Spectra

Compound Details

Synonymous names
ACETYLENE
Ethyne
Acetylen
Narcylen
Ethine
Vinylene
74-86-2
Azetylen
C2H2
Ethin
CH#CH
HC#CH
ACETYLENE (D1)
[CH(CH)]
OC7TV75O83
CHEBI:27518
ACETYLENE (1,2-13C2)
Ethenylene
HSDB 166
EINECS 200-816-9
UN1001
UNII-OC7TV75O83
Dicarbon
Diatomic carbon
Welding Gas
Acetylene, dissolved
Carbon (C2)
ACETYLENE [MI]
ACETYLENE [HSDB]
EC 200-816-9
60382-96-9
CHEMBL116336
DTXSID6026379
DTXSID40175448
DTXSID101027115
c0526
MCULE-9422154630
UN 1001
NS00001585
C01548
Acetylene, dissolved [UN1001] [Flammable gas]
Q133145
Q3591986
12070-15-4
Microorganism:

Yes

IUPAC nameacetylene
SMILESC#C
InchiInChI=1S/C2H2/c1-2/h1-2H
FormulaC2H2
PubChem ID6326
Molweight26.04
LogP0.4
Atoms2
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkynes
CHEBI-ID27518
Supernatural-IDSN0134026

mVOC Specific Details

Boiling Point
DegreeReference
84.7 °C peer reviewed
Volatilization
The Henry's Law constant for acetylene is estimated as 2.2X10-2 atm-cu m/mole(SRC) derived from its vapor pressure, 3.65X10+4 mm Hg(1), and water solubility, 1,200 mg/L(2). This Henry's Law constant indicates that acetylene is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 1.5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 2 days(SRC). Acetylene's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of acetylene from dry soil surfaces will exist(SRC) based upon its vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1998) (2) Yalkowsky SH et al; Handbook of Aqueous Solubility Data. 2nd ed. Boca Ratin, FL: CRC Press, p. 20 (2010) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The Koc of acetylene is estimated as 2(SRC), using a log Kow of 0.37(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that acetylene is expected to have very high mobility in soil. Less than 1 ppm of gas acetylene was absorbed to dry soil and a maximum of 90 ppm of acetylene was absorbed to moist soil samples taken from 6 soil samples from Oregon, Iowa and Saskatchewan, Canada(4).
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR, consult. ed., Washington, DC: Amer Chem Soc p. 4 (1995) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Jan 15, 2014: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983) (4) Smith et al.; Soil Science 116: 313-319 (1973)
Vapor Pressure
PressureReference
3.65X10+4 mm Hg at 25 deg C (est)Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1998)

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaBacillus Toyonensisisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaBacillus Amyloliquefaciensn/aNALee et al. 2012
ProkaryotaBacillus Subtilisn/aNALee et al. 2012
ProkaryotaPaenibacillus Polymyxan/aNALee et al. 2012
EukaryotaPenicillium Digitatumn/aNAStotzky and Schenck 1976
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaBacillus ToyonensisTSB mediaSPME/GC-MSno
ProkaryotaBacillus AmyloliquefaciensTryptic soy agarSPME coupled with GC-MSno
ProkaryotaBacillus SubtilisTryptic soy agarSPME coupled with GC-MSno
ProkaryotaPaenibacillus PolymyxaTryptic soy agarSPME coupled with GC-MSno
EukaryotaPenicillium Digitatumn/an/ano


Ethyl Acetate

Mass-Spectra

Compound Details

Synonymous names
ETHYL ACETATE
141-78-6
Ethyl ethanoate
Acetic acid ethyl ester
Acetoxyethane
Vinegar naphtha
Acetic ether
Ethyl acetic ester
Acetic acid, ethyl ester
Ethylacetate
Acetidin
Essigester
EtOAc
Acetic ester
Aethylacetat
Ethylacetat
1-acetoxyethane
AcOEt
RCRA waste number U112
Ethylacetaat
Octan etylu
FEMA No. 2414
Etile (acetato di)
Ethylazetat
Caswell No. 429
Ethyle (acetate d')
Acetate d'ethyle
Acetato de etilo
Ethyl acetate (natural)
Ethylester kyseliny octove
CHEBI:27750
Essigsaeureethylester
acetic-acid-ethylester
HSDB 83
NSC 70930
CCRIS 6036
acet-ethylester
acet-eth-ester
Ethyl ester of acetic acid
EINECS 205-500-4
MFCD00009171
NSC-70930
CH3-CO-O-CH3
EPA Pesticide Chemical Code 044003
UNII-76845O8NMZ
Ethyl acetate [NF]
DTXSID1022001
Ethyl Acetate, HPLC
AI3-00404
76845O8NMZ
DTXCID602001
EC 205-500-4
ETHYL ACETATE (1-13C)
ETHYL ACETATE (2-13C)
NSC70930
Ethyl acetate (NF)
NCGC00091766-01
E1504
ETHYL ACETATE (II)
ETHYL ACETATE [II]
Ethyl acetate, ACS reagent
ETHYL ACETATE (MART.)
ETHYL ACETATE [MART.]
Ethyl acetate; Ethyl ethanoate
Essigester [German]
Ethylacetaat [Dutch]
Aethylacetat [German]
Octan etylu [Polish]
ethyl-acetate
ETHYL ACETATE (EP MONOGRAPH)
ETHYL ACETATE [EP MONOGRAPH]
acetic acid ethyl
Acetate d'ethyle [French]
Acetato de etilo [Spanish]
Ethyl acetate, ACS reagent, >=99.5%
CAS-141-78-6
Etile (acetato di) [Italian]
Ethyle (acetate d') [French]
Ethylester kyseliny octove [Czech]
UN1173
CH3COOC2H5
RCRA waste no. U112
ethylaceate
ethylactate
ethylacteate
Etylacetate
ehtyl acetate
ethanol acetate
ethly acetate
ethyl acteate
ethyl_acetate
ehyl acetate
ethl acetate
ethy acetate
ethyl aceate
ethyl actate
etyl acetate
Acetyl ester
1-ethyl acetate
2~ethyl acetate
acetic ethyl ester
Etile(acetato di)
Et-OAc
Ethyle(acetate d')
Caswell No 429
acetic acid ethylester
CH3CO2Et
Ethyl acetate HPLC grade
Ethyl acetate, for HPLC
Ethyl acetate, 99.9%
Ethyl acetate, ACS grade
CH3CO2CH2CH3
Epitope ID:116868
for HPLC,99.9%
ETHYL ACETATE [MI]
Ethyl acetate, HPLC Grade
CH3CO2C2H5
ETHYL ACETATE [FCC]
ETHYL ACETATE [FHFI]
ETHYL ACETATE [HSDB]
ETHYL ACETATE [INCI]
Ethyl acetate, >=99.5%
WLN: 2OV1
CHEMBL14152
ACETIC ACID,ETHYL ESTER
Ethyl acetate, AR, >=99%
Ethyl acetate, LR, >=99%
ETHYL ACETATE [USP-RS]
ETHYL ACETATE [WHO-DD]
Ethyl acetate, analytical standard
Ethyl acetate, Environmental Grade
Ethyl acetate, anhydrous, 99.8%
Ethyl acetate, 99.9% low benzene
Tox21_111166
Tox21_202512
BDBM50128823
c0036
STL282717
Ethyl acetate, >=99%, FCC, FG
Ethyl acetate, HPLC grade, 99.8%
AKOS000121947
Ethyl acetate, Spectrophotometric Grade
MCULE-6628539781
UN 1173
Ethyl acetate, for HPLC, >=99.5%
Ethyl acetate, for HPLC, >=99.7%
Ethyl acetate, for HPLC, >=99.8%
Ethyl acetate, PRA grade, >=99.5%
NCGC00260061-01
Ethyl acetate, biotech. grade, >=99.8%
Ethyl acetate, ReagentPlus(R), >=99.5%
Ethyl acetate, ReagentPlus(R), >=99.8%
Ethyl acetate, tested according to Ph.Eur.
A0030
Ethyl acetate 100 microg/mL in Acetonitrile
Ethyl acetate, natural, >=99%, FCC, FG
Ethyl acetate, SAJ first grade, >=99.0%
NS00004207
Q0040
EN300-31487
Ethyl acetate [UN1173] [Flammable liquid]
Ethyl acetate, for HPLC, >=99.8% (GC)
Ethyl acetate, JIS special grade, >=99.5%
C00849
D02319
Ethyl acetate, capillary GC grade, >=99.5%
A807811
Q407153
Ethyl acetate, Laboratory Reagent, >=99.0% (GC)
Ethyl acetate, UV-IR min. 99.8%, isocratic grade
J-007556
J-521240
F0001-0489
InChI=1/C4H8O2/c1-3-6-4(2)5/h3H2,1-2H
Ethyl acetate, puriss. p.a., ACS reagent, >=99.5% (GC)
Ethyl acetate, United States Pharmacopeia (USP) Reference Standard
Ethylacetate, pure, meets the analytical specifications of Ph. Eur.
Ethyl Acetate, Pharmaceutical Secondary Standard; Certified Reference Material
Ethyl acetate, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., >=99.5% (GC)
Ethyl acetate, puriss. p.a., free of higher boiling impurities, >=99.9% (GC)
Ethyl acetate, puriss., meets analytical specification of Ph. Eur., BP, NF, >=99.5% (GC)
Microorganism:

Yes

IUPAC nameethyl acetate
SMILESCCOC(=O)C
InchiInChI=1S/C4H8O2/c1-3-6-4(2)5/h3H2,1-2H3
FormulaC4H8O2
PubChem ID8857
Molweight88.11
LogP0.7
Atoms6
Bonds2
H-bond Acceptor2
H-bond Donor0
Chemical Classificationesters
CHEBI-ID27750
Supernatural-IDSN0427928

mVOC Specific Details

Boiling Point
DegreeReference
77.1 °C peer reviewed
Volatilization
The Henry's Law constant for ethyl acetate is 1.34X10-4 atm-cu m/mole(1). This Henry's Law constant indicates that ethyl acetate is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 9 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 6 days(SRC). Ethyl acetate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Ethyl acetate is expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 93.2 mm Hg(3).
Literature: (1) Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Jun 25, 2014: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (4) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis, (1991)
Soil Adsorption
The Koc of ethyl acetate is estimated as 18(SRC), using a log Kow of 0.73(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that ethyl acetate is expected to have very high mobility in soil(SRC). A log Ki (snow surface/air (cu m/sq m)) of -3.69 has been reported for sorption to snow(4).
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR (consult ed) Washington,DC: Amer Chem Soc p. 9 (1995) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Jun 25, 2014: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 23 (1983) (4) Roth CM et al; Environ Sci Technol 38: 4078-4084 (2004)
Vapor Pressure
PressureReference
93.2 mm Hg at 25 deg CDaubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis, (1991)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaBurkholderia CepaciaNANAThorn et al. 2011
ProkaryotaEscherichia ColiNANAThorn et al. 2011
ProkaryotaProteus MirabilisNANAThorn et al. 2011
ProkaryotaStreptococcus PyogenesNANAThorn et al. 2011
ProkaryotaKlebsiella PneumoniaeNANAAhmed et al. 2023
EukaryotaCandida AlbicansNANAFitzgerald et al. 2022
EukaryotaCandida ParapsilosisNANAFitzgerald et al. 2022
ProkaryotaEscherichia ColiNANAFitzgerald et al. 2021
ProkaryotaPseudomonas AeruginosaNANAFitzgerald et al. 2021
ProkaryotaStaphylococcus AureusNANAFitzgerald et al. 2021
EukaryotaAspergillus FumigatusNANAAhmed et al. 2018
EukaryotaCandida KruseiNANAHertel et al. 2016a
EukaryotaCandida GlabrataNANAHertel et al. 2016a
EukaryotaCandida TropicalisNANAHertel et al. 2016a
EukaryotaCandida AlbicansNANAHertel et al. 2016a
ProkaryotaHaemophilus InfluenzaeNANAFilipiak et al. 2012
ProkaryotaPseudomonas AeruginosaNANAFilipiak et al. 2012
ProkaryotaStaphylococcus AureusNANAFilipiak et al. 2012
ProkaryotaStreptococcus PneumoniaeNANAFilipiak et al. 2012
EukaryotaSaccharomyces CerevisiaeNACaballero Ortiz et al. 2018
ProkaryotaStaphylococcus AureusChina Center of Industrial Culture collectionWang et al. 2018
EukaryotaFusarium OxysporumonionWang et al. 2018
EukaryotaFusarium ProliferatumonionWang et al. 2018
EukaryotaAureobasidium PullulansNAContarino et al. 2019
EukaryotaMetschnikowia PulcherrimaNAContarino et al. 2019
EukaryotaSaccharomyces CerevisiaeNAContarino et al. 2019
EukaryotaWickerhamomyces AnomalusNAContarino et al. 2019
EukaryotaPenicillium DigitatumNASchnürer et al. 1999
EukaryotaPichia AnomalaNASchnürer et al. 1999
ProkaryotaPseudomonas Sp.antifungal activity against Thielaviopsis ethacetica mycelial growthBrazilian Biorenewables National Laboratory – LNBR/CNPEM Microorganism Collection, Campinas, SP; isolatedfrom soil and roots of highly productive sugarcane-producing regions; BrazilFreitas et al. 2022
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
EukaryotaCandida AlbicansATCC MYA-2876, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida GlabrataATCC 90030, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida TropicalisATCC 750, American Type Culture CollectionCosta et al. 2020
EukaryotaFusarium OxysporumNAMoisan et al. 2021
EukaryotaMortierella Alpina/globalpinaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaMortierella Angustaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaMortierella Bainieriisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaLinnemannia Exiguaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaLinnemannia Gamsiiisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaMortierella Gemmiferaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaPodila Horticolaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaPodila Humilis/verticilataisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaLinnemannia Hyalinaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaEntomortierella Parvisporaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaMortierella Pseudozygosporaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaMortierella Solitariaisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaMortierella Zonataisolate from different types of soil in AustriaTelagathoti et al. 2021
EukaryotaGrosmannia ClavigeraNorthern Forestry Centre Culture Collection (Edmonton, Alberta), originally cultured from the phloem of MPB-infested lodgepole pine trees near Banff, AlbertaWang et al. 2020
EukaryotaOphiostoma Ipsisolated from bark beetle galleries in lodgepole pineWang et al. 2020
ProkaryotaBacillus Subtilispromote biomass production of Arabidopsis thalianarhizosphere of Haloxylon ammodendronHe et al. 2023
EukaryotaTuber Aestivumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Brumalen/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Melanosporumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Mesentericumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Rufumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Simonean/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTrichoderma Viriden/aNAWheatley et al. 1997
EukaryotaTrichoderma Pseudokoningiin/aNAWheatley et al. 1997
EukaryotaCeratocystis Sp.Enhanced growth and sporulation of Pestalotia rhododendri at low concentrations. Inhibited growth and sporulation of Aspergillus niger.NAStotzky and Schenck 1976
EukaryotaThielaviopsis BasicolaEnhanced growth and sporulation of Pestalotia rhododendri at low concentrations. Inhibited growth and sporulation of Aspergillus niger.NAStotzky and Schenck 1976
EukaryotaDipodascus AggregatusEnhanced growth and sporulation of Pestalotia rhododendri at low concentrations. Inhibited growth and sporulation of Aspergillus niger.NAStotzky and Schenck 1976
EukaryotaSaccharomyces CerevisiaeEnhanced growth and sporulation of Pestalotia rhododendri at low concentrations. Inhibited growth and sporulation of Aspergillus niger.NAStotzky and Schenck 1976
ProkaryotaSerratia Sp.n/aNABruce et al. 2004
EukaryotaSaccharomyces Cerevisiaen/aNABruce et al. 2004
EukaryotaTuber Aestivumn/aFortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Brumalen/aFortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Melanosporumn/aAgricultural Centre of Castilla and León Community (Monasterio de la Santa Espina, Valladolid, Spain) and Navaleno (Soria, Spain).Diaz et al. 2003
EukaryotaNeurospora Sp.n/aNAPastore  et al. 1994
EukaryotaMuscodor Crispansn/aNAMitchell et al. 2010
ProkaryotaBacillus Amyloliquefaciensn/aNALee et al. 2012
ProkaryotaBacillus Subtilisn/aNALee et al. 2012
ProkaryotaPaenibacillus Polymyxan/aNALee et al. 2012
EukaryotaAscocoryne Sarcoidesn/aNAMallette et al.  2012
EukaryotaNeurospora Sitophilan/aNAPastore et al. 1994
ProkaryotaEscherichia Colin/aNAHettinga et al. 2008
ProkaryotaStaphylococcus Aureusn/aNAHettinga et al. 2008
ProkaryotaStreptococcus Uberisn/aNAHettinga et al. 2008
ProkaryotaStreptococcus Dysgalactiaen/aNAHettinga et al. 2008
EukaryotaSaccharomyces Cerevisiaecontrol citrus black spot disease fermentation processesToffano et al. 2017
EukaryotaGeotrichum Candidumcompost mixed with milky fermented productZirbes et al. 2011
EukaryotaCandida Shehataecacti, fruits, insects, natural habitatsNout and Bartelt 1998
EukaryotaCeratocystis FagacearumNALin and Phelan 1992
ProkaryotaLeuconostoc Citreumnagoat cheese wheyPogačić et al. 2016
EukaryotaPenicillium Communenain dry-cured meat products, cheeseSunesson et al. 1995
EukaryotaTuber BorchiiT. melanosporum, T. borchii were collected from northern Italy (Piedmont) and T. indicum from Yunnan and Sichuan Provinces (China). Splivallo et al. 2007b
EukaryotaTuber MesentericumNoneNoneMarch et al. 2006
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
EukaryotaMetschnikowia PulcherrimaNANALjunggren et al. 2019
EukaryotaZygosaccharomyces RouxiiNANAPei et al. 2022
EukaryotaHanseniaspora UvarumNANAMozūraitis et al. 2022
EukaryotaPichia KudriavzeviiNANAMozūraitis et al. 2022
EukaryotaPichia FermentansNANAMozūraitis et al. 2022
EukaryotaSaccharomyces ParadoxusNANAMozūraitis et al. 2022
EukaryotaTorulaspora DelbrueckiiNANAMozūraitis et al. 2022
EukaryotaPichia AnomalaNANAMozūraitis et al. 2022
EukaryotaMetschnikowia PulcherrimaNANAMozūraitis et al. 2022
ProkaryotaStaphylococcus EquorumNANAToral et al. 2021
ProkaryotaBacillus AtrophaeusNANAToral et al. 2021
ProkaryotaPeribacillus Sp.NANAToral et al. 2021
ProkaryotaPseudomonas SegetisNANAToral et al. 2021
ProkaryotaBacillus VelezensisNANAToral et al. 2021
ProkaryotaPsychrobacillus VulpisNANAToral et al. 2021
EukaryotaSaccharomyces EubayanusNANAMardones et al. 2020
EukaryotaMeyerozyma GuilliermondiiNANAZhao et al. 2022
EukaryotaSaccharomyces CerevisiaeNANAZhao et al. 2022
EukaryotaSaccharomycopsis ViniNANAZhao et al. 2022
EukaryotaSaturnispora DiversaNANAZhao et al. 2022
EukaryotaWickerhamomyces AnomalusNANAZhao et al. 2022
EukaryotaHanseniaspora ValbyensisNANATran et al. 2022
Meyerozyma GuilliermondiiXiong et al. 2023
Saccharomyces CerevisiaeQin et al. 2024
Lentinula EdodesGeng et al. 2024
Fusarium GraminearumBallot et al. 2023
Lactobacillus PlantarumZhang et al. 2023
Cyberlindnera FabianiiMa et al. 2023
Staphylococcus AureusWang et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaBurkholderia CepaciaTYESIFT-MSno
ProkaryotaEscherichia ColiTYESIFT-MSno
ProkaryotaProteus MirabilisTYESIFT-MSno
ProkaryotaStreptococcus PyogenesTYESIFT-MSno
ProkaryotaKlebsiella PneumoniaeNBTD/GC-MSno
EukaryotaCandida AlbicansYPDSPME/GC-MSno
EukaryotaCandida ParapsilosisYPDSPME/GC-MSno
ProkaryotaEscherichia ColiBHISPME/GC-MSno
ProkaryotaEscherichia ColiTSBSPME/GC-MSno
ProkaryotaEscherichia ColiLBSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaTSBSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaBHISPME/GC-MSno
ProkaryotaStaphylococcus AureusBHISPME/GC-MSno
ProkaryotaStaphylococcus AureusTSBSPME/GC-MSno
EukaryotaAspergillus FumigatusAMMTD/GC-MSno
EukaryotaCandida KruseiSDATD/GC-MSno
EukaryotaCandida GlabrataSDATD/GC-MSno
EukaryotaCandida TropicalisSDATD/GC-MSno
EukaryotaCandida AlbicansSDATD/GC-MSno
ProkaryotaHaemophilus InfluenzaeTryptic soya supp. factors X&VTD/GC-MSno
ProkaryotaPseudomonas Aeruginosatryptic soy brothTD/GC-MSno
ProkaryotaStaphylococcus Aureustryptic soy brothTD/GC-MSno
ProkaryotaStreptococcus PneumoniaeTryptic soyaTD/GC-MSno
EukaryotaSaccharomyces Cerevisiaemedium malt extract agar ± SucroseHS-SPME, GC-MSno
ProkaryotaStaphylococcus AureusSodium chloride brothSPME, GC-MSno
EukaryotaFusarium OxysporumLiquid onion extract medium (LOM)SPME, GC-MSyes
EukaryotaFusarium ProliferatumLiquid onion extract medium (LOM)SPME, GC-MSyes
EukaryotaAureobasidium PullulansYPDA(HS)-SPME/GC-MSno
EukaryotaMetschnikowia PulcherrimaYPDA(HS)-SPME/GC-MSno
EukaryotaSaccharomyces CerevisiaeYPDA(HS)-SPME/GC-MSno
EukaryotaWickerhamomyces AnomalusYPDA(HS)-SPME/GC-MSno
EukaryotaPenicillium Digitatummalt extract agar with 0.5-1.0% acetic acidTenaxGC,Chromosorb,HS-SPME, GC-MSno
EukaryotaPichia Anomalamalt extract agar with 0.5-1.0% acetic acidTenaxGC,Chromosorb,HS-SPME, GC-MSno
ProkaryotaPseudomonas Sp.LB media, DYGS mediaHS-SPME/GC-MSno
ProkaryotaPseudomonas Sp.DYGS mediaHS-SPME/GC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
EukaryotaCandida AlbicansYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida GlabrataYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida TropicalisYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaFusarium Oxysporum1/5th PDA mediumGC-MSno
EukaryotaMortierella Alpina/globalpinaPD agarPTR-ToF-MSno
EukaryotaMortierella AngustaPD agarPTR-ToF-MSno
EukaryotaMortierella BainieriPD agarPTR-ToF-MSno
EukaryotaLinnemannia ExiguaPD agarPTR-ToF-MSno
EukaryotaLinnemannia GamsiiPD agarPTR-ToF-MSno
EukaryotaMortierella GemmiferaPD agarPTR-ToF-MSno
EukaryotaPodila HorticolaPD agarPTR-ToF-MSno
EukaryotaPodila Humilis/verticilataPD agarPTR-ToF-MSno
EukaryotaLinnemannia HyalinaPD agarPTR-ToF-MSno
EukaryotaEntomortierella ParvisporaPD agarPTR-ToF-MSno
EukaryotaMortierella PseudozygosporaPD agarPTR-ToF-MSno
EukaryotaMortierella SolitariaPD agarPTR-ToF-MSno
EukaryotaMortierella ZonataPD agarPTR-ToF-MSno
EukaryotaGrosmannia ClavigeraPDA mediaGC-MSno
EukaryotaOphiostoma IpsPDA mediaGC-MSno
ProkaryotaBacillus Subtilis1/2 MS mediaSPME/GC-MSno
EukaryotaTuber Aestivumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Brumalen/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Melanosporumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Mesentericumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Rufumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Simonean/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTrichoderma VirideLow mediumGC/MSno
EukaryotaTrichoderma PseudokoningiiLow mediumGC/MSno
EukaryotaCeratocystis Sp.n/an/ano
EukaryotaThielaviopsis Basicolan/an/ano
EukaryotaDipodascus Aggregatusn/an/ano
EukaryotaSaccharomyces Cerevisiaen/an/ano
ProkaryotaSerratia Sp.n/an/ano
EukaryotaTuber Aestivumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Brumalen/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Melanosporumn/aHeadspace solid-phase microextraction (HS-SPME) combined with GC-MSno
EukaryotaNeurospora Sp.potato dextrose agardynamic headspace/gas chromatographyno
EukaryotaMuscodor Crispanspotato dextrose agarSPME-GC-MSno
ProkaryotaBacillus AmyloliquefaciensTryptic soy agarSPME coupled with GC-MSno
ProkaryotaBacillus SubtilisTryptic soy agarSPME coupled with GC-MSno
ProkaryotaPaenibacillus PolymyxaTryptic soy agarSPME coupled with GC-MSno
EukaryotaAscocoryne SarcoidesMinimal mediumPTR-MS and SPME GC-MSno
EukaryotaNeurospora SitophilaMalt extractHeadspace/gas chromatographyno
ProkaryotaEscherichia ColiMilkHS-SPME/GC-MS no
ProkaryotaStaphylococcus AureusMilkHS-SPME/GC-MS no
ProkaryotaStreptococcus UberisMilkHS-SPME/GC-MS no
ProkaryotaStreptococcus DysgalactiaeMilkHS-SPME/GC-MS no
EukaryotaSaccharomyces CerevisiaeYEPDAGC/MSno
EukaryotaGeotrichum Candidummedium 863SPME-GC-MSyes
EukaryotaCandida Shehataeyeast malt agarSPME, GC-MSyes
EukaryotaCeratocystis Fagacearumno
ProkaryotaLeuconostoc Citreumcurd-based broth mediumGC/MSyes
EukaryotaPenicillium CommuneMEAGC/MSno
EukaryotaTuber Borchiiyes
EukaryotaTuber MesentericumNonePressure balanced head-space sampling and GC/TOF-MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
EukaryotaMetschnikowia Pulcherrimaliquid YPD mediumGC-MSno
EukaryotaZygosaccharomyces RouxiiYPD mediumGC-MSno
EukaryotaHanseniaspora UvarumYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
EukaryotaPichia KudriavzeviiYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
EukaryotaPichia FermentansYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
EukaryotaSaccharomyces ParadoxusYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
EukaryotaTorulaspora DelbrueckiiYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
EukaryotaPichia AnomalaYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
EukaryotaMetschnikowia PulcherrimaYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
ProkaryotaStaphylococcus EquorumMOLPHS-SPME-GC/MSno
ProkaryotaStaphylococcus EquorumSchaeffer’s growth (SG) mediumHS-SPME-GC/MSno
ProkaryotaStaphylococcus Equorumtryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno
ProkaryotaBacillus AtrophaeusMOLPHS-SPME-GC/MSno
ProkaryotaBacillus AtrophaeusSchaeffer’s growth (SG) mediumHS-SPME-GC/MSno
ProkaryotaBacillus Atrophaeustryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno
ProkaryotaPeribacillus Sp.MOLPHS-SPME-GC/MSno
ProkaryotaPeribacillus Sp.Schaeffer’s growth (SG) mediumHS-SPME-GC/MSno
ProkaryotaPeribacillus Sp.tryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno
ProkaryotaPseudomonas SegetisMOLPHS-SPME-GC/MSno
ProkaryotaPseudomonas SegetisSchaeffer’s growth (SG) mediumHS-SPME-GC/MSno
ProkaryotaPseudomonas Segetistryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno
ProkaryotaBacillus VelezensisMOLPHS-SPME-GC/MSno
ProkaryotaBacillus VelezensisSchaeffer’s growth (SG) mediumHS-SPME-GC/MSno
ProkaryotaBacillus Velezensistryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno
ProkaryotaPsychrobacillus VulpisMOLPHS-SPME-GC/MSno
ProkaryotaPsychrobacillus VulpisSchaeffer’s growth (SG) mediumHS-SPME-GC/MSno
ProkaryotaPsychrobacillus Vulpistryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno
EukaryotaSaccharomyces Eubayanusbeer wortHS‐GC‐FIDno
EukaryotaMeyerozyma Guilliermondiisynthetic grape juiceHS-SPMEno
EukaryotaSaccharomyces Cerevisiaesynthetic grape juiceHS-SPMEno
EukaryotaSaccharomycopsis Vinisynthetic grape juiceHS-SPMEno
EukaryotaSaturnispora Diversasynthetic grape juiceHS-SPMEno
EukaryotaWickerhamomyces Anomalussynthetic grape juiceHS-SPMEno
EukaryotaHanseniaspora Valbyensissugared green and black teaHS-SPME-GC/MSno
Meyerozyma GuilliermondiiYEPD, 10 g/L yeast extrac, 20 g/L peptone, 20 g dextroseGC-MS and GC-IMSno
Saccharomyces Cerevisiaefermentation of mulberry wineHS-SPME-GC-MSno
Lentinula EdodesJiuqu (traditional wheat Qu)GC-IMSno
Fusarium Graminearumtryptone soy (TS medium; Carl Roth, Karlsruhe, Germany)GC-QQQ-MSno
Lactobacillus PlantarumHabanero pepperGC–IMSno
Cyberlindnera Fabianiituna cooking liquidHS-SPME-GC/MSno
Staphylococcus Aureusraw Shiyang chickenHS-GC-IMS/HS-SPME-GC-MSno