Results for:
Species: Cladosporium sp.

Methyl Benzoate

Mass-Spectra

Compound Details

Synonymous names
METHYL BENZOATE
93-58-3
Methylbenzoate
Benzoic acid, methyl ester
benzoic acid methyl ester
Clorius
Methyl benzenecarboxylate
Essence of niobe
Oxidate le
FEMA No. 2683
Methyl benzoate (natural)
Methylester kyseliny benzoove
NSC 9394
CCRIS 5851
HSDB 5283
EINECS 202-259-7
UNII-6618K1VJ9T
DTXSID5025572
CHEBI:72775
AI3-00525
CLORIUS-
6618K1VJ9T
NSC-9394
MFCD00008421
Methyl ester of benzoic acid
DTXCID405572
EC 202-259-7
CAS-93-58-3
UN2938
Methylester kyseliny benzoove [Czech]
Benzoato de metilo
methyloxycarbonylbenzene
benzoic acid methylester
Methyl benzoate, 99%
Methyl-benzenecarboxylate
Benzoic acid-methyl ester
WLN: 1OVR
SCHEMBL7200
METHYL BENZOATE [MI]
MLS001050185
CHEMBL16435
METHYL BENZOATE [FCC]
METHYL BENZOATE [FHFI]
METHYL BENZOATE [HSDB]
METHYL BENZOATE [INCI]
SCHEMBL4790973
SCHEMBL10330498
NSC9394
Methyl benzoate, >=99% (GC)
Methyl benzoate, analytical standard
Tox21_201832
Tox21_303198
BBL010502
STK021498
AKOS000120640
Methyl benzoate, >=98%, FCC, FG
AT34734
MCULE-3681534655
UN 2938
Methyl benzoate, for synthesis, 98.0%
NCGC00091665-01
NCGC00091665-02
NCGC00256939-01
NCGC00259381-01
BP-31073
SMR001216584
VS-02533
B0074
NS00012849
EN300-15500
Methyl benzoate, natural, >=98%, FCC, FG
C20645
A844641
Q417328
J-522592
Methyl benzoate [UN2938] [Keep away from food]
Z19825577
F0001-2239
InChI=1/C8H8O2/c1-10-8(9)7-5-3-2-4-6-7/h2-6H,1H
Microorganism:

Yes

IUPAC namemethyl benzoate
SMILESCOC(=O)C1=CC=CC=C1
InchiInChI=1S/C8H8O2/c1-10-8(9)7-5-3-2-4-6-7/h2-6H,1H3
FormulaC8H8O2
PubChem ID7150
Molweight136.15
LogP2.1
Atoms10
Bonds2
H-bond Acceptor2
H-bond Donor0
Chemical Classificationaromatic compounds benzenoids esters
CHEBI-ID72775
Supernatural-IDSN0311624

mVOC Specific Details

Boiling Point
DegreeReference
199 °C peer reviewed
Volatilization
The Henry's Law constant for methyl benzoate is estimated as 3.24X10-5 atm-cu m/mole(SRC) derived from its vapor pressure, 0.38 mm Hg(1), and water solubility, 2.1X10+3 mg/L(2). This Henry's Law constant indicates that methyl benzoate is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 22 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 14 days(SRC). Methyl benzoate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Methyl benzoate is not expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 0.38 mm Hg(1).
Literature: (1) Daubert TE, Danner RP; Data Compilation Tables of Properties of Pure Compounds New York, NY: Amer Inst for Phys Prop Data (1989) (2) Riddick JA et al; Organic Solvents 4th ed. New York, NY: Wiley (1986) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The adsorption of methyl benzoate was determined by a modified version of the OECD guideline 106, a batch equilibrium method, in three soils with different characteristics: an acid forest soil (Podzol), an agricultural soil (Alfisol), and a sediment. The respective Freundlich constants, Kf (1/n), for the three soils were 8.64 (0.81), 1.29 (0.85), and 1.51 (0.84)(1). Koc values for the Podzol, Alfisol and sediment were 178, 103, and 95, respectively(1). Methyl benzoate also has a reported log Koc value of 2.10 (Koc = 126)(2). Using a structure estimation method based on molecular connectivity indices(3), the Koc of methyl benzoate can be estimated to be 70(SRC). According to a classification scheme(3), methyl benzoate is expected to have moderate to high mobility in soil.
Literature: (1) Von Oepen B et al; Chemosphere 22: 285-304 (1991) (2) Schuurmann G et al; Environ Sci Technol 40: 7005-11 (2006) (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
0.38 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium TuberculosisNANANawrath et al. 2012
ProkaryotaEscherichia ColiNANAFitzgerald et al. 2021
ProkaryotaPseudomonas AeruginosaNANAFitzgerald et al. 2021
ProkaryotaEnterobacter CloacaeNANAJünger et al. 2012
ProkaryotaStreptomyces Sp.antifungal activity against Colletotrichum gloeosporioides (growth and spore inhibition)coral reef of Old Providence and Santa Catalina Islands, Colombian, Caribbean SeaGómez et al. 2021
EukaryotaCandida AlbicansATCC MYA-2876, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida GlabrataATCC 90030, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida TropicalisATCC 750, American Type Culture CollectionCosta et al. 2020
ProkaryotaStaphylococcus Epidermidisstrains were provided by Prof. O'Gara at NUI GalwayFitzgerald et al. 2020
ProkaryotaStaphylococcus EpidermidisAmerican Type Culture CollectionJenkins and Bean 2020
EukaryotaSerendipita IndicaInstitute of Phytopathology, Justus-Liebig-Universität, Gießen, Germany; origin: isolates from sudangrass roots growing in soil-based trap systemsVenneman et al. 2020
EukaryotaSerendipita WilliamsiiInstitute of Phytopathology, Justus-Liebig-Universität, Gießen, Germany; origin: isolates from sudangrass roots growing in soil-based trap systemsVenneman et al. 2020
ProkaryotaStreptomyces Sp.n/aNASchulz and Dickschat 2007
ProkaryotaStigmatella Sp.n/aNASchulz and Dickschat 2007
EukaryotaPhellinus Sp.n/aNAStotzky and Schenck 1976
ProkaryotaStigmatella Aurantiacan/aNADickschat et al. 2005_5
ProkaryotaSalinispora Tropicanamarine sedimentGroenhagen et al. 2016
ProkaryotaPseudomonas Syringaenaphyllosphere of field-grown potato plantsHunziker et al. 2015
EukaryotaPhialophora FastigiatananaSunesson et al. 1995
EukaryotaCladosporium Sp.nanaNaznin et al. 2014
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
EukaryotaMetschnikowia HawaiiensisNANALjunggren et al. 2019
EukaryotaSaccharomyces CerevisiaeNANAHarris et al. 2021
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium Tuberculosis7H11GC-MSno
ProkaryotaEscherichia ColiBHISPME/GC-MSno
ProkaryotaEscherichia ColiTSBSPME/GC-MSno
ProkaryotaEscherichia ColiLBSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaTSBSPME/GC-MSno
ProkaryotaEnterobacter CloacaeColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaStreptomyces Sp.ISP2 (International Streptomyces Project) mediaGS-MSno
EukaryotaCandida AlbicansYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida GlabrataYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida TropicalisYGC mediaHS-SPME/GC-GC-ToFMSno
ProkaryotaStaphylococcus EpidermidisTSB mediaHS-SPME/GC-MSno
ProkaryotaStaphylococcus EpidermidisLB mediaHS-SPME/GC×GC-TOFMSno
EukaryotaSerendipita IndicaPD agarPTR-TOF-MSyes
EukaryotaSerendipita WilliamsiiPD agarPTR-TOF-MSyes
ProkaryotaStreptomyces Sp.n/an/ano
ProkaryotaStigmatella Sp.n/an/ano
EukaryotaPhellinus Sp.n/an/ano
ProkaryotaStigmatella Aurantiacan/an/ano
ProkaryotaSalinispora Tropicaseawater-based A1GC/MSno
ProkaryotaPseudomonas SyringaeLB mediumGC/MSyes
EukaryotaPhialophora FastigiataDG18GC/MSno
EukaryotaCladosporium Sp.naSPME-GC/MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
EukaryotaMetschnikowia Hawaiiensisliquid YPD mediumGC-MSno
EukaryotaSaccharomyces Cerevisiaemalt extract brothHS-SPME with GC-MSno