Results for:
PubChem ID: 8900

Compound Details

Synonymous names
HEPTANE
n-Heptane
142-82-5
Heptan
Heptyl hydride
Dipropyl methane
Dipropylmethane
Gettysolve-C
Skellysolve C
Heptanen
Eptani
HSDB 90
NSC 62784
Heptanes
EINECS 205-563-8
UNII-456148SDMJ
Heptane (GC grade)
DTXSID6024127
CHEBI:43098
AI3-28784
456148SDMJ
MFCD00009544
NSC-62784
DTXCID004127
EC 205-563-8
HEPTANE (II)
HEPTANE [II]
Pentane, ethyl-
Heptan [Polish]
Eptani [Italian]
Heptanen [Dutch]
normal-Heptane
HP6
UN1206
normal heptane
heptan-e
2ygu
Heptane; Dipropylmethane; Heptyl hydride; NSC 62784; Skellysolve C; n-Heptane
high purity heptane
pharma grade heptane
Heptane, for HPLC
n-Heptane, anhydrous
industry grade heptane
n-Heptane, 99%
n-Heptane HPLC grade
HPLC Grade n-Heptane
n-Heptane, HPLC grade
HEPTANE [HSDB]
HEPTANE [INCI]
Heptane, 99.5%
Heptane, technical grade
HEPTANE (N)
N-HEPTANE [MI]
HEPTANE [USP-RS]
Heptane, anhydrous, 99%
Exxsol heptane (Salt/Mix)
Heptane, p.a., 95%
pharmaceutical grade heptane
Heptane, Laboratory Reagent
Heptane, analytical standard
Heptane, AR, >=99%
Heptane, LR, >=99%
WLN: 7H
Heptane, ASTM, 99.8%
n-C7H16
Heptane, p.a., 95.0%
n-Heptane, Environmental Grade
CHEMBL134658
Heptane, for HPLC, >=96%
Heptane, for HPLC, >=99%
CH3-(CH2)5-CH3
DTXSID60187245
DTXSID80188294
Heptane, HPLC grade, >=99%
Heptane, ReagentPlus(R), 99%
Heptane, purification grade, 99%
Heptane, >=99% (capillary GC)
Heptane, biotech. grade, >=99%
Heptanes (30-40 % n-heptane)
AMY22304
Heptane, for HPLC, >=99.5%
NSC62784
Tox21_201213
Heptane, puriss., >=99% (GC)
LMFA11000575
AKOS009158011
Heptane, p.a., 88.0-92.0%
Heptane, UV HPLC spectroscopic, 95%
MCULE-5817084747
Heptane, SAJ first grade, >=98.0%
Heptane, spectrophotometric grade, 99%
Heptane, SAJ special grade, >=99.0%
NCGC00248959-01
NCGC00258765-01
CAS-142-82-5
Heptane, UV HPLC spectroscopic, 99.5%
Heptanes [UN1206] [Flammable liquid]
LS-13366
n-Heptane 100 microg/mL in Acetonitrile
H0027
H0088
H0491
Heptane, puriss. p.a., >=99.5% (GC)
NS00004625
Q0037
A807968
Heptane, for preparative HPLC, >=99.7% (GC)
Q310957
J-007700
n-Heptane HPLC, UV-IR min. 99%, isocratic grade
n-Heptane, Spectrophotometric Grade, 99% n-Heptan
F1908-0180
B7F4D751-FB0E-4F48-9829-D952CEC36530
Heptane, United States Pharmacopeia (USP) Reference Standard
InChI=1/C7H16/c1-3-5-7-6-4-2/h3-7H2,1-2H
Heptane, Pharmaceutical Secondary Standard; Certified Reference Material
Heptane, PRA grade, 96% n-isomer basis, >=99.9% C7 isomers basis
Heptane, puriss. p.a., Reag. Ph. Eur., >=99% n-heptane basis (GC)
Heptane Fraction, puriss. p.a., Reag. Ph. Eur., >=99% n-heptane basis (GC)
Heptane, puriss., absolute, over molecular sieve (H2O <=0.005%), >=99.5% (GC)
Microorganism:

Yes

IUPAC nameheptane
SMILESCCCCCCC
InchiInChI=1S/C7H16/c1-3-5-7-6-4-2/h3-7H2,1-2H3
FormulaC7H16
PubChem ID8900
Molweight100.2
LogP4.4
Atoms7
Bonds4
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID43098
Supernatural-IDSN0149559

mVOC Specific Details

Boiling Point
DegreeReference
98.38 °C peer reviewed
Volatilization
The Henry's Law constant for n-heptane is estimated as 1.8 atm-cu m/mole(SRC) derived from its vapor pressure, 46 mm Hg(1), and water solubility, 3.4 mg/L(2). This Henry's Law constant indicates that n-heptane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 2.9 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.0 days(SRC). n-Heptane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of n-heptane from dry soil surfaces may exist(SRC) based upon a vapor pressure of 46 mm Hg(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) Yalkowsky,SH et al; Handbook of Aqueous Solubility Data. 2nd Edition. Boca Raton, FL: CRC Press, p. 437 (2010) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Literature: #In a study quantifying the passive volatilization of a synthetic gasoline and its individual components in three air-dried soils over a period of up to 16 days, n-heptane had a volatilization half-life of approximately 10 hours in a loamy sand at a depth of 50 mm(1). Using different soil types, n-heptane, at a depth of 50 mm, volatilized first from sand, followed by a loamy sand and finally a silt loam, showing that as the particle size of the soil decreased and the clay and organic content matter increased, the volatilization rate decreased(1). Complete volatilization of n-heptane from a tray containing a gasoline pool thickness of 7 mm at a temperature of 18.5 deg C occurred after approximately 5.6 hours(1). In a study in which a jet fuel mixture was incubated in freshwater from the Escambia River, FL at 25 deg C, a 99% loss of n-heptane in the controls was attributed to evaporation(2). n-Heptane as a component of missile fuel was also lost to volatilization within 5 hours when incubated with water from the Range Point salt marsh, FL(3). n-Heptane degradation was observed in active and sterile sandy loam treated with JP-4 jet fuel (10 uL per gram of soil)(4). The concentration of n-heptane at 0 time was 0.277 ug/mL in the active soil and 0.235 ug/mL in the sterile soil while the concentrations in both soils were 0 ug/mL when they were tested a second time after 5 days; evaporation was considered to be the primary removal process(4).
Literature: (1) Arthurs P et al; J Soil Contam 4: 123-35 (1995) (2) Spain JC et al; Degrad of Jet Fuel Hydrocarbons by Aquatic Microbial Communities. Tyndall AFB, FL: Air Force Eng Serv Ctr AFESC/ESL-TR-83-26 NTIS AD-A139791/8 p. 226 (1983) (3) Spain JC, Somerville CC; Chemosphere 14: 239-48 (1985) (4) Dean-Ross D; Bull Environ Contam Toxicol 51: 596-99 (1993)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-heptane can be estimated to be 240(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-heptane is expected to have moderate mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of October 1, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
4.60X10+1 mm Hg at 25 deg C /Extrapolated/Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium BovisNANAKüntzel et al. 2018
ProkaryotaPseudomonas ProtegensNAMannaa et al. 2018
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
EukaryotaTrichoderma Viriden/aNAWheatley et al. 1997
EukaryotaTrichoderma Pseudokoningiin/aNAWheatley et al. 1997
EukaryotaPenicillium Communenain dry-cured meat products, cheeseSunesson et al. 1995
ProkaryotaMoraxella Catarrhaliscould serve as potential biomarkers to distinguish between viruses and bacteriaNAAbd El Qader et al. 2015
ProkaryotaHaemophilus Influenzaecould serve as potential biomarkers to distinguish between viruses and bacteriaNAAbd El Qader et al. 2015
ProkaryotaLegionella Pneumophilacould serve as potential biomarkers to distinguish between viruses and bacteriaNAAbd El Qader et al. 2015
ProkaryotaStreptococcus Mutans as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
ProkaryotaLactobacillus Salivarius as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
ProkaryotaPropionibacterium Acidifaciens as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium BovisHEYMNTD/GC-MSno
ProkaryotaPseudomonas Protegenstryptic soy broth (TSB)gastight syringe, GC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
EukaryotaTrichoderma VirideMalt extract/Low mediumGC/MSno
EukaryotaTrichoderma PseudokoningiiLow mediumGC/MSno
EukaryotaPenicillium CommuneDG18GC/MSno
ProkaryotaMoraxella Catarrhalisblood cultureSPME/GC-MS no
ProkaryotaHaemophilus Influenzaeblood cultureSPME/GC-MS no
ProkaryotaLegionella Pneumophilablood cultureSPME/GC-MS no
ProkaryotaStreptococcus MutansBrain-Heart-Infusion agarTenax-trap/GC-MSno
ProkaryotaLactobacillus SalivariusBrain-Heart-Infusion agarTenax-trap/GC-MSno
ProkaryotaPropionibacterium AcidifaciensBrain-Heart-Infusion agarTenax-trap/GC-MSno