Results for:
PubChem ID: 638072

(6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene

Mass-Spectra

Compound Details

Synonymous names
Spinacen
Spinacene
squalene
Supraene
YYGNTYWPHWGJRM-AAJYLUCBSA-N
Skvalen
Super Squalene
trans-Squalene
AC1LCVLF
All-trans-Squalene
AC1Q1NVK
Nikko Squalane EX
MF59
AC1Q28HB
Squalene, Spinacene, Supraene
7QWM220FJH
GTPL3054
1977AC
C30H50
UNII-7QWM220FJH
CCRIS 711
QSPL 049
Squalene, all-trans-
CHEMBL458402
LS-525
NSC93748
PhytoSquene® [olive oil-derived Squalene]
C00751
HSDB 8242
AK115145
LP067385
CHEBI:15440
DSSTox_CID_6044
ZINC6845904
AJ-56905
CJ-13112
DSSTox_GSID_26044
NSC-93748
SC-66368
DSSTox_RID_77993
MFCD00008912
KB-225990
PhytoSquene(R) (olive oil-derived Squalene)
RTR-031960
ST24027355
TR-031960
AKOS015917344
I14-9704
J-002505
(E,E,E,E)-Squalene
Tox21_112789
Tox21_113239
111-02-4
Squalene, 98% 100g
7683-64-9
NCGC00181163-01
NCGC00181323-01
CAS-111-02-4
EINECS 203-826-1
11051-27-7
21245-10-3
94016-35-0
EC 203-826-1
SR-01000944749
3170-EP2269989A1
3170-EP2269990A1
3170-EP2272825A2
3170-EP2284160A1
3170-EP2287165A2
3170-EP2287166A2
3170-EP2292620A2
3170-EP2295406A1
3170-EP2298731A1
3170-EP2298772A1
3170-EP2298776A1
3170-EP2298779A1
3170-EP2301923A1
3170-EP2305825A1
3170-EP2308510A1
3170-EP2308562A2
3170-EP2308839A1
3170-EP2311841A1
3170-EP2371811A2
MolPort-001-785-792
SR-01000944749-1
3704365A-1DAB-4AAA-A0D0-CAE7A96723AC
2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetracosahexaene
2,6,10,15,19,23-Hexamethyltetracosa-2,6,10,14,18,22-hexaene
2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetracosahexene
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-,
(All-E)-2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene
(all-E)-2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetraco-sahexaene
(6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (2E,6E,10E,14E,18E)-
2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (6E,10E,14E,18E)-
2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (all-E)-
2,6,10,14,18,22-Tetracosahexaene,2,6,10,15,19,23-hexamethyl-, (2E,6E,10E,14E,18E)-
2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetracosahexaene, (all-E)-
2,6,10,15,19,23-Hexamethyltetracosa-(2E,6E,10E,14E,18E,22E)-2,6,10,14,18,22-hexaene
InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24
Microorganism:

Yes

IUPAC name(6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
SMILESCC(=CCCC(=CCCC(=CCCC=C(C)CCC=C(C)CCC=C(C)C)C)C)C
InchiInChI=1S/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24+
FormulaC30H50
PubChem ID638072
Molweight410.73
LogP10.42
Atoms80
Bonds79
H-bond Acceptor0
H-bond Donor0
Chemical ClassificationAlkenes terpenes

mVOC Specific Details

Volatilization
The Henry's Law constant for squalene is estimated as 2.0 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that squalene is expected to volatilize rapidly (from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 8 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is >5 years if adsorption is considered(3). Squalene's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). However, volatilization from moist soil is expected to be attenuated by adsorption(SRC). Squalene is not expected to volatilize from dry soil surfaces(SRC) based upon an estimated vapor pressure of 6.3X10-6 mm Hg(SRC), determined from a fragment constant method(1).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of June 22, 2015: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) US EPA; EXAMS II Computer Simulation (1987)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of squalene can be estimated to be 1X10+8(SRC). According to a classification scheme(2), this estimated Koc value suggests that squalene is expected to be immobile mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of June 22, 2015: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
6.3X10-6 mm Hg at 25 deg C (est)US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of June 22, 2015: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm

Microorganisms emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
BacteriaMarine Streptomycete (isolate B6007)n/aStritzke et al., 2004
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
BacteriaMarine Streptomycete (isolate B6007)n/an/a