Volatilization | The Henry's Law constant for 1-dodecene is estimated as 4.25 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that 1-dodecene is expected to volatilize rapidly from moist soil and water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 1.324 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 120 hours(SRC). However, the volatilization half-life does not take into account the effects of adsorption. An estimated Koc of 5900 (SRC), from a log Kow of 6.10 (SRC) and a regression-derived equation (3), suggests that volatilization could be attenuated by adsorption to suspended solids and sediments in water (SRC). This is apparent from the results of two EXAMS model runs, one in which the effect of adsorption was considered, yielding an estimated half-life of 39 days in a model pond 2 m deep, and one in which the effect of adsorption was ignored, yielding an estimated half-life of 45 hr in a model pond 2 m deep (4). 1-Dodecene's Henry's Law constant(1) indicates that volatilization from moist soil surfaces will occur(SRC). The potential for volatilization of 1-dodecene from dry soil surfaces is not expected(SRC) based upon an estimated vapor pressure of 0.0159 mm Hg 25 deg C(SRC). Literature: (1) Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 4-9 (1990) (4) USEPA; EXAMS II Computer Simulation (1987) |
Soil Adsorption | Using a structure estimation method based on molecular connectivity indices(1), the Koc for 1-dodecene can be estimated to be 5900(SRC). According to a classification scheme(2), this estimated Koc value suggests that 1-dodecene is expected to be immobile in soil(SRC). Literature: (1) Meylan WM et al; Environ Sci Technol 26: 1560-67 (1992) (2) Swann RL et al; Res Rev 85: 17-28 (1983) |
Vapor Pressure | Pressure | Reference |
---|
0.0159 mm Hg at 25 deg C | Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989. | 1 MM HG @ 47.2 DEG C | Sax, N.I. Dangerous Properties of Industrial Materials. 4th ed. New York: Van Nostrand Reinhold, 1975., p. 709 |
|