Volatilization | The Henry's Law constant for heptanal is 2.7X10-4 atm-cu m/mole(1). This Henry's Law constant indicates that n-heptanal is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 7 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 5 days(SRC). n-Heptanal's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Heptanal is expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 3.52 mm Hg(3). Literature: (1) Buttery RG et al; J Agric Food Chem 17: 385-9 (1969) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Daubert TE, Danner RP; Data Compilation Tables of Properties of Pure Compounds NY, NY: Amer Inst for Phys Prop Data (1989) |
Soil Adsorption | The Koc of n-heptanal is estimated as 86(SRC), using a water solubility of 1250 mg/L(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that n-heptanal is expected to have high mobility in soil. Literature: (1) Suzuki T; J Computer-Aided Molecular Design 5:149-66 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 4-5 (1990) (3) Swann RL et al; Res Rev 85: 17-28 (1983) |