Volatilization | The Henry's Law constant for furan is estimated as 5.4X10-3 atm-cu m/mole(SRC) derived from its vapor pressure, 600 mm Hg(1), and water solubility, 10,000 mg/L(2). This Henry's Law constant indicates that furan is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 2.5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 3.3 days(SRC). Furan's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of furan from dry soil surfaces may exist(SRC) based upon its vapor pressure(1). Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation; Design Inst Phys Prop Data, Amer Inst Chem Eng. New York, NY: Hemisphere Pub Corp, 4 Vol (1989) (2) Valvani SC et al; J Pharm Sci 70: 502-7 (1981) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) |
Soil Adsorption | Using a structure estimation method based on molecular connectivity indices(1), the Koc of furan can be estimated to be 80(SRC). According to a classification scheme(2), this estimated Koc value suggests that furan is expected to have high mobility in soil. Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.0. Jan, 2009. Available from, as of Aug 31, 2010: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Swann RL et al; Res Rev 85: 17-28 (1983) |