Volatilization | The Henry's Law constant for n-pentanoic acid is 4.72X10-7 atm-cu m/mole(1). This Henry's Law constant indicates that n-pentanoic acid is expected to be essentially nonvolatile from water surfaces(2). Volatilization of the ionized form from water surfaces is not expected to be an important fate process(SRC). Pentanoic acid is not expected to volatilize from dry soil surfaces(SRC) based upon an estimated vapor pressure of 1.96X10-1 mm Hg(3). Literature: (1) Khan I et al; J Atmos Chem 22:285-302 (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) |
Soil Adsorption | The Koc of n-pentanoic acid is estimated as 140(SRC), using a log Kow of 1.39(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that n-pentanoic acid is expected to have high mobility in soil. In aqueous solution, n-pentanoic acid adsorbed 15.4 and 37.9% onto the clay minerals kaolinite and montmorillonite, respectively, after 144 hours at 22 deg C(4). The pKa of n-pentanoic acid is 4.84(5), indicating that this compound will partially exist in the anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(6). Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Stearic Constants. ACS Prof Ref Book. Heller SR (consult ed) Washington, DC: Amer Chem Soc p. 14 (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 4-9 (1990) (3) Swann RL et al; Res Rev 85: 23 (1983) (4) Hemphill L, Swanson WS; Sorption of Organic Acids by Pure Clay Minerals in Aqueous Solution, Proc of the 18th Industrial Waste Conf, Eng Bull Purdue U, Lafayette, IN 18: 204-17 (1964) (5) Dean JA; Handbook of Organic Chemistry; New York, NY: McGraw-Hill, Inc pp. 8-45 (1987) (6) Doucette WJ; pp. 141-188 in Handbook of Property Estimation Methods for Chemicals. Boethling RS, Mackay D, eds. Boca Raton, FL: Lewis Publ (2000) |