Volatilization | The Henry's Law constant for 2-methylpentane is estimated as 1.7 atm-cu m/mole(SRC) derived from its vapor pressure, 211 mm Hg(1), and water solubility, 14.2 mg/L(2). This Henry's Law constant indicates that 2-methylpentane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4 days(SRC). 2-Methylpentane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of 2-methylpentane from dry soil surfaces may exist (SRC) based upon a vapor pressure of 211 mm Hg(1). Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation. Design Institute for Physical Property Data, American Institute of Chemical Engineers. New York, NY: Hemisphere Pub. Corp., 4 Vol. (1989) (2) Yalkowsky SH et al; Handbook of Aqueous Solubility Data. 2nd ed. Boca Raton, FL: CRC Press p. 320 (2010) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) |
Soil Adsorption | Using a structure estimation method based on molecular connectivity indices(1), the Koc of 2-methylpentane can be estimated to be 610(SRC). According to a classification scheme(2), this estimated Koc value suggests that 2-methylpentane is expected to have low mobility in soil. A sorption experiment using lignite samples resulted in a log Kd of 2.92 for 2-methylpentane(3). Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 20, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Swann RL et al; Res Rev 85: 17-28 (1983) (3) Endo S et al; Environ Sci Technol 42: 5897-5903 (2008) |