Results for:
PubChem ID: 7505

Benzonitrile

Mass-Spectra

Compound Details

Synonymous names
BENZONITRILE
100-47-0
Cyanobenzene
Phenyl cyanide
Benzenenitrile
Benzoic acid nitrile
Benzene, cyano-
Benzenecarbonitrile
Phenylcyanide
Fenylkyanid
benzonitril
Fenylkyanid [Czech]
NSC 8039
HSDB 45
CCRIS 3184
AI3-24184
UNII-9V9APP5H5S
EINECS 202-855-7
9V9APP5H5S
UN2224
C6H5-CN
DTXSID7021491
CHEBI:27991
NSC-8039
DTXCID001491
EC 202-855-7
Benzonitrile [UN2224] [Poison]
MFCD00001770
CAS-100-47-0
benzo nitrile
4-cyanobenzene
benzonitrile solvent
WLN: NCR
BENZONITRILE [MI]
bmse000284
BENZONITRILE [HSDB]
SCHEMBL6640
MLS002454387
CHEMBL15819
NSC8039
Benzonitrile, anhydrous, >=99%
HMS3039F17
Benzonitrile, for HPLC, 99.9%
Tox21_201982
Tox21_302979
Benzonitrile, ReagentPlus(R), 99%
STK398186
AKOS000120125
AM10697
MCULE-9371683291
UN 2224
NCGC00091747-01
NCGC00091747-02
NCGC00256387-01
NCGC00259531-01
LS-13256
SMR001372003
B0082
NS00010846
EN300-19362
C09814
Q412567
J-000140
F1908-0163
Z104473628
Microorganism:

Yes

IUPAC namebenzonitrile
SMILESC1=CC=C(C=C1)C#N
InchiInChI=1S/C7H5N/c8-6-7-4-2-1-3-5-7/h1-5H
FormulaC7H5N
PubChem ID7505
Molweight103.12
LogP1.6
Atoms8
Bonds0
H-bond Acceptor1
H-bond Donor0
Chemical Classificationbenzenoids nitriles nitrogen compounds aromatic compounds
CHEBI-ID27991
Supernatural-IDSN0163807

mVOC Specific Details

Boiling Point
DegreeReference
190.7 °C peer reviewed
Volatilization
The Henry's Law constant for benzonitrile is estimated as 5.21X10-5 atm-cu m/mole(SRC) derived from its vapor pressure, 0.768 mm Hg(1), and water solubility of 2000 mg/L(2). This Henry's Law constant indicates that benzonitrile is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 20 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 9 days(SRC). Benzonitrile's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Benzonitrile is not expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) Riddick JA et al; Techniques of Chemistry 4th ed., Volume II. Organic Solvents. New York, NY: John Wiley and Sons (1985) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The Koc of benzonitrile is estimated as 150(SRC), using a log Kow of 1.56(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that benzonitrile is expected to have moderate mobility in soil(SRC).
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR, consult. ed., Washington, DC: Amer Chem Soc p. 27 (1995) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Sept 15, 2014: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
0.768 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas AeruginosaNANABean et al. 2012
ProkaryotaEnterobacter CloacaeNANAJünger et al. 2012
ProkaryotaEscherichia ColiNANAJünger et al. 2012
ProkaryotaProteus MirabilisNANAJünger et al. 2012
ProkaryotaPseudomonas AeruginosaNANAJünger et al. 2012
ProkaryotaSerratia MarcescensNANAJünger et al. 2012
ProkaryotaStaphylococcus EpidermidisNANAJünger et al. 2012
ProkaryotaStreptococcus PneumoniaeNANAJünger et al. 2012
ProkaryotaKlebsiella Pneumoniaeclinical isolate,bacteremic patientsRees et al. 2017
ProkaryotaBacillus Muralisantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaBacillus Pumilusantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaBacillus Subtilisantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaBacillus Amyloliquefaciensantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaBacillus Megateriumantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaStaphylococcus AureusAmerican Type Culture CollectionJenkins and Bean 2020
ProkaryotaStaphylococcus EpidermidisAmerican Type Culture CollectionJenkins and Bean 2020
ProkaryotaCollimonas Fungivoransn/aNAGarbeva et al. 2014
ProkaryotaCollimonas Pratensisn/aNAGarbeva et al. 2014
ProkaryotaSerratia Plymuthicastimulates growth of Pseudomonas fluorescens Pf0-1maize rhizosphere, NetherlandsGarbeva et al. 2014
EukaryotaMetschnikowia LopburiensisNANALjunggren et al. 2019
ProkaryotaEnterobacter Sp.NANAAlmeida et al. 2022
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas Aeruginosalysogeny brothSPME/GCxGC-MSno
ProkaryotaEnterobacter CloacaeColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaEscherichia ColiColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaProteus MirabilisColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaPseudomonas AeruginosaColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaSerratia MarcescensColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaStaphylococcus EpidermidisColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaStreptococcus PneumoniaeColumbia sheep bloodTD/GC-MS and MCC-IMSno
ProkaryotaKlebsiella PneumoniaeBHI, LB, MHB, TSBSPME / GCxGC-TOFMSno
ProkaryotaBacillus MuralisNA mediaSPME/GC-MSno
ProkaryotaBacillus PumilusNA mediaSPME/GC-MSno
ProkaryotaBacillus SubtilisNA mediaSPME/GC-MSno
ProkaryotaBacillus AmyloliquefaciensNA mediaSPME/GC-MSno
ProkaryotaBacillus MegateriumNA mediaSPME/GC-MSno
ProkaryotaStaphylococcus AureusLB mediaHS-SPME/GC×GC-TOFMSno
ProkaryotaStaphylococcus EpidermidisLB media, MHB mediaHS-SPME/GC×GC-TOFMSno
ProkaryotaCollimonas Fungivoranssand supplemented with artificial root exudatesHeadspace trapping/GC-MSno
ProkaryotaCollimonas Pratensissand supplemented with artificial root exudatesHeadspace trapping/GC-MSno
ProkaryotaSerratia Plymuthicasand containing artificial root exudatesGC/MSno
EukaryotaMetschnikowia Lopburiensisliquid YPD mediumGC-MSno
ProkaryotaEnterobacter Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no