Results for:
PubChem ID: 7222

1,3-benzothiazole

Mass-Spectra

Compound Details

Synonymous names
BENZOTHIAZOLE
95-16-9
BENZO[D]THIAZOLE
1,3-Benzothiazole
Benzosulfonazole
1-Thia-3-azaindene
Vangard BT
benzothiazol
USAF EK-4812
FEMA No. 3256
CHEBI:45993
O-2857
MFCD00005775
G5BW2593EP
DTXSID7024586
NSC-8040
BT
DTXCID204586
benzthiazole
FEMA Number 3256
CAS-95-16-9
CCRIS 7893
HSDB 2796
NSC 8040
EINECS 202-396-2
BRN 0109468
UNII-G5BW2593EP
s-benzothiazole
AI3-05742
Benzothiazole, 96%
1,3-Benzothiazole #
BENZOTHIAZOLE [MI]
Epitope ID:138946
EC 202-396-2
SCHEMBL8430
BENZOTHIAZOLE [FHFI]
BENZOTHIAZOLE [HSDB]
WLN: T56 BN DSJ
4-27-00-01069 (Beilstein Handbook Reference)
MLS001050134
Benzothiazole, >=96%, FG
CHEMBL510309
SCHEMBL9304593
NSC8040
Benzothiazole, analytical standard
AMY23315
Tox21_201853
Tox21_303232
BDBM50444460
LT0034
STL268890
AKOS000120178
AC-3297
CS-W013350
FS-4155
HY-W012634
MCULE-5257468117
NCGC00091399-01
NCGC00091399-02
NCGC00257070-01
NCGC00259402-01
BOT
SMR001216577
DB-057562
B0092
NS00000291
Benzothiazole, Vetec(TM) reagent grade, 96%
EN300-19148
D77749
AC-907/25014160
Q419096
Q-100900
F0001-2268
Z104472964
InChI=1/C7H5NS/c1-2-4-7-6(3-1)8-5-9-7/h1-5
Microorganism:

Yes

IUPAC name1,3-benzothiazole
SMILESC1=CC=C2C(=C1)N=CS2
InchiInChI=1S/C7H5NS/c1-2-4-7-6(3-1)8-5-9-7/h1-5H
FormulaC7H5NS
PubChem ID7222
Molweight135.19
LogP2
Atoms9
Bonds0
H-bond Acceptor2
H-bond Donor0
Chemical Classificationnitrogen compounds benzenoids heterocyclic compounds thiazoles aromatic compounds sulfur compounds
CHEBI-ID45993
Supernatural-IDSN0150933

mVOC Specific Details

Boiling Point
DegreeReference
227-228 DEG C AT 765 MM HGBudavari, S. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, NJ: Merck and Co., Inc., 1996., p. 186
Volatilization
The Henry's Law constant for benzothiazole is estimated as 3.7 X 10-7 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This value indicates that benzothiazole will volatilize slowly from water surfaces(2,SRC). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec) is estimated as approximately 114 days(2,SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec) is estimated as approximately 832 days(2,SRC). Benzothiazole's Henry's Law constant(1,SRC) indicates that volatilization from moist soil surfaces should be slow(SRC).
Literature: (1) Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The Koc of benzothiazole is estimated as approximately 295(SRC), using an experimental log Kow of 2.01(1,SRC) and a regression-derived equation(2,SRC). According to a recommended classification scheme(3), this estimated Koc value suggests that benzothiazole has moderate mobility in soil(SRC).
Literature: (1) Hansch C et al; Exploring QSAR Hydrophobic, Electronic and Stearic Constants Washington DC: Amer Chem Soc (1995) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 4-9 (1990) (3) Swann RL et al; Res Rev 85: 23 (1983)
MS-Links
1D-NMR-Links
Massbank-Links
Massbank Spectrum MSBNK-Antwerp_Univ-AN124202
Massbank Spectrum MSBNK-Antwerp_Univ-AN124204
Massbank Spectrum MSBNK-Antwerp_Univ-AN124208
Massbank Spectrum MSBNK-Athens_Univ-AU405606
Massbank Spectrum MSBNK-Athens_Univ-AU405608
Massbank Spectrum MSBNK-BAFG-CSL2311108601
Massbank Spectrum MSBNK-BAFG-CSL2311108602
Massbank Spectrum MSBNK-BAFG-CSL2311108603
Massbank Spectrum MSBNK-BAFG-CSL2311108604
Massbank Spectrum MSBNK-BAFG-CSL2311108605
Massbank Spectrum MSBNK-CASMI_2016-SM882102
Massbank Spectrum MSBNK-Eawag-EA034302
Massbank Spectrum MSBNK-Eawag-EA034303
Massbank Spectrum MSBNK-Eawag-EA034304
Massbank Spectrum MSBNK-Eawag-EA034305
Massbank Spectrum MSBNK-Eawag-EA034306
Massbank Spectrum MSBNK-Eawag-EA034307
Massbank Spectrum MSBNK-Eawag-EA034308
Massbank Spectrum MSBNK-Eawag-EA034309
Massbank Spectrum MSBNK-Eawag-EA034310
Massbank Spectrum MSBNK-Eawag-EA034311
Massbank Spectrum MSBNK-Eawag-EA034312
Massbank Spectrum MSBNK-Eawag-EA034313
Massbank Spectrum MSBNK-Fac_Eng_Univ_Tokyo-JP000473
Massbank Spectrum MSBNK-Fac_Eng_Univ_Tokyo-JP008217
Massbank Spectrum MSBNK-Fac_Eng_Univ_Tokyo-JP012060
Massbank Spectrum MSBNK-UFZ-UF420801
Massbank Spectrum MSBNK-UFZ-UF420802
Massbank Spectrum MSBNK-UFZ-UF420803
Massbank Spectrum MSBNK-UFZ-WANA042101AD6CPH
Massbank Spectrum MSBNK-UFZ-WANA042103B085PH
Massbank Spectrum MSBNK-UFZ-WANA042105070APH
Massbank Spectrum MSBNK-UFZ-WANA042111C9CFPH
Massbank Spectrum MSBNK-UFZ-WANA042113D9F1PH
Massbank Spectrum MSBNK-UFZ-WANA0421155BE0PH
Massbank Spectrum MSBNK-UFZ-WANA0421213166PH
Massbank Spectrum MSBNK-UFZ-WANA0421237762PH
Massbank Spectrum MSBNK-UFZ-WANA042125AF82PH

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaStenotrophomonas MaltophiliaNANAKaeslin et al. 2021
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaBacillus SubtilisNAGao et al. 2018
ProkaryotaBacillus Velezensistoxic effects on fungal mycelial growthmaize seedMassawe et al. 2018
ProkaryotaBacillus Muralisantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaNovosphingobium Lindaniclasticumantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaBacillus Subtilisantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaBacillus Megateriumantifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreriphytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, MexicoDe la Cruz-López et al. 2022
ProkaryotaBacillus Subtilisantifungal activity against Alternaria solaniisolate from rhizosphere of potato in Shandong and Hebei Province in ChinaZhang et al. 2020
ProkaryotaPaenibacillus Polymyxaantifungal effects against Rhizopus stoloniferisolated from an ancient tree Cryptomeria fortune and deposited in China General Microbiological Culture Collection Center (CGMCC No. 15733)Wu et al. 2020
ProkaryotaStenotrophomonas Maltophiliaantifungal activity against Colletotrichum nymphaeaeisolated from the healthy strawberry leaf in Kamyaran, Kurdistan provinceAlijani et al. 2020
ProkaryotaBacillus Subtilisinhibited the mycelial growth of Lasiodiplodia theobromae L26NASudha et al. 2021
EukaryotaTrichoderma Viriden/anot shownWheatley et al. 1997
EukaryotaTrichoderma Viriden/aNAWheatley et al. 1997
ProkaryotaChondromyces Crocatusn/aNASchulz et al. 2004
ProkaryotaPseudomonas ChlororaphisIt has been shown to inhibit development of sclerotia of fungi.NASchulz and Dickschat 2007
ProkaryotaStreptomyces Sp.It has been shown to inhibit development of sclerotia of fungi.NASchulz and Dickschat 2007
ProkaryotaCyanobacteria Sp.It has been shown to inhibit development of sclerotia of fungi.NASchulz and Dickschat 2007
ProkaryotaMyxobacterium Sp.It has been shown to inhibit development of sclerotia of fungi.NASchulz and Dickschat 2007
ProkaryotaPseudomonas FluorescensInhibition of mycelium growth and spore germinationNAFernando et al. 2005
ProkaryotaPseudomonas CorrugataInhibition of mycelium growth and spore germinationNAFernando et al. 2005
ProkaryotaPseudomonas AurantiacaInhibition of mycelium growth and spore germinationNAFernando et al. 2005
ProkaryotaBacillus Sp.Inhibition of Mycelium growth of Paecilomyces lilacinus and Pochonia chlamydosporia.NAZou et al. 2007
ProkaryotaStenotrophomonas MaltophiliaInhibition of Mycelium growth of Paecilomyces lilacinus and Pochonia chlamydosporia.NAZou et al. 2007
ProkaryotaAlcaligenes FaecalisInhibition of Mycelium growth of Paecilomyces lilacinus and Pochonia chlamydosporia.NAZou et al. 2007
ProkaryotaArthrobacter NitroguajacolicusInhibition of Mycelium growth of Paecilomyces lilacinus and Pochonia chlamydosporia.NAZou et al. 2007
ProkaryotaLysobacter GummosusInhibition of Mycelium growth of Paecilomyces lilacinus and Pochonia chlamydosporia.NAZou et al. 2007
ProkaryotaSporosarcina GinsengisoliInhibition of Mycelium growth of Paecilomyces lilacinus and Pochonia chlamydosporia.NAZou et al. 2007
ProkaryotaStreptomyces Sp.n/aNADickschat et al. 2005_2
ProkaryotaNannocystis Exedensn/aNADickschat et al. 2007
EukaryotaTuber Magnatumn/aItalian geographical areas (Umbria, Emilia Romagna, Border region area between Emilia Romagna and Marche)Gioacchini et al. 2008
EukaryotaTrichoderma Sp.NANemcovic et al. 2008
EukaryotaAspergillus Sp.NASeifert and King 1982
ProkaryotaSalinispora Tropicanamarine sedimentGroenhagen et al. 2016
ProkaryotaPseudomonas Simiaenarhizosphere of a soybean field in the province of Rajasthan, IndiaVaishnav et al. 2016
ProkaryotaStreptomyces ThermocarboxydusNANAPassari et al. 2019
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaStenotrophomonas MaltophiliaBHISESI-MSno
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaBacillus SubtilisLuria-Bertani (LB) agarHS / SPME / GC-MSno
ProkaryotaBacillus VelezensisMinimal salt mediumSPME, GC-MSno
ProkaryotaBacillus MuralisNA mediaSPME/GC-MSno
ProkaryotaNovosphingobium LindaniclasticumNA mediaSPME/GC-MSno
ProkaryotaBacillus SubtilisNA mediaSPME/GC-MSno
ProkaryotaBacillus MegateriumNA mediaSPME/GC-MSno
ProkaryotaBacillus SubtilisLB mediaHS-SPME/GC-MSyes
ProkaryotaPaenibacillus PolymyxaLB agar and M49 (minimal) mediaSPME/GC-MSyes
ProkaryotaStenotrophomonas MaltophiliaNA mediaGC-MSno
ProkaryotaBacillus Subtilisnutrient agar mediumSPME/GC-MSno
EukaryotaTrichoderma Virideminimal agarVOCS were analysed by Integrated Automated Thermal Desorbtion-GC-MS. The isolates were grown on a minimal agar medium with the carbon:nitrogen levels similar to that found in Scots pine wood. Covered cultures were incubated at 25°C for 48h.no
EukaryotaTrichoderma VirideMalt extract/Low mediumGC/MSno
ProkaryotaChondromyces Crocatusn/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaStreptomyces Sp.n/an/ano
ProkaryotaCyanobacteria Sp.n/an/ano
ProkaryotaMyxobacterium Sp.n/an/ano
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaBacillus Sp.n/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaAlcaligenes Faecalisn/an/ano
ProkaryotaArthrobacter Nitroguajacolicusn/an/ano
ProkaryotaLysobacter Gummosusn/an/ano
ProkaryotaSporosarcina Ginsengisolin/an/ano
ProkaryotaNannocystis Exedensn/an/ano
EukaryotaTuber Magnatumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTrichoderma Sp.no
EukaryotaAspergillus Sp.no
ProkaryotaSalinispora Tropicaseawater-based A1GC/MSno
ProkaryotaPseudomonas SimiaeNutrient broth; King's B agarGC/MSno
ProkaryotaStreptomyces Thermocarboxydusactinomycetes isolation agar (AIA)GC-MSno