Volatilization | The Henry's Law constant for isobornyl acetate is estimated as 9.5X10-5 atm-cu m/mole(SRC) developed using a fragment constant estimation method(1). This Henry's Law constant indicates that isobornyl acetate is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 17 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 9.5 days(SRC). Isobornyl acetate's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC).Isobornyl acetate has an estimated vapor pressure of 0.11 mm Hg(SRC), determined from a fragment constant method(13) and exists as a liquid under environmental conditions: therefore, isobornyl acetate may volatilize from dry soil(SRC). Isobornyl acetate dissipated within one week when added along with 21 other fragrance materials to a Georgetown, DE anaerobically digested municipal sludge and applied to four soils (sandy agricultural loam, silty midwestern agrigultural loam, high organic carbon soil, and a highly weathered oxide-rich soil)(3). |
Soil Adsorption | Using a structure estimation method based on molecular connectivity indices(1), the Koc of isobornyl acetate can be estimated to be 420(SRC). According to a classification scheme(2), this estimated Koc value suggests that isobornyl acetate is expected to moderate mobility in soil(SRC). |