Kingdom | Species | Biological Function | Origin/Habitat | Reference |
---|
Prokaryota | Escherichia Coli | NA | NA | Ahmed et al. 2023 |
Prokaryota | Klebsiella Pneumoniae | NA | NA | Ahmed et al. 2023 |
Prokaryota | Pseudomonas Aeruginosa | NA | NA | Ahmed et al. 2023 |
Prokaryota | Staphylococcus Aureus | NA | NA | Ahmed et al. 2023 |
Prokaryota | Acinetobacter Baumannii | NA | NA | Gao et al. 2016 |
Prokaryota | Escherichia Coli | NA | NA | Hewett et al. 2020 |
Prokaryota | Pseudomonas Aeruginosa | NA | NA | Bean et al. 2012 |
Prokaryota | Pseudomonas Aeruginosa | NA | NA | Davis et al. 2020 |
Prokaryota | Escherichia Coli | NA | NA | Dixon et al. 2022 |
Prokaryota | Bacillus Sp. | antifungal activity against Fusarium solani | Rhizosphere soil of avocado | Guevara-Avendaño et al. 2019 |
Prokaryota | Pseudomonas Putida | inhibitory activity against oomycete and fungal pathogens, antibacterial activity against R. pseudosolanacearum, dimethyl trisulphide nematicidal activity against R. similis, effect against Phytophthora rot on black pepper shoot cuttings | Black pepper root | Agisha et al. 2019 |
Prokaryota | Bacillus Muralis | antifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreri | phytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico | De la Cruz-López et al. 2022 |
Prokaryota | Bacillus Pumilus | antifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreri | phytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico | De la Cruz-López et al. 2022 |
Prokaryota | Novosphingobium Lindaniclasticum | antifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreri | phytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico | De la Cruz-López et al. 2022 |
Prokaryota | Bacillus Subtilis | antifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreri | phytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico | De la Cruz-López et al. 2022 |
Prokaryota | Bacillus Amyloliquefaciens | antifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreri | phytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico | De la Cruz-López et al. 2022 |
Prokaryota | Bacillus Megaterium | antifungal activity against mycelial growth and spore germination of phytopathogenic Moniliophtora roreri | phytopathology strain collection of El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico | De la Cruz-López et al. 2022 |
Prokaryota | Bacillus Subtilis | | | Zhang et al. 2021 |
Prokaryota | Pseudomonas Sp. | antifungal activity against Thielaviopsis ethacetica mycelial growth | Brazilian Biorenewables National Laboratory – LNBR/CNPEM Microorganism Collection, Campinas, SP; isolatedfrom soil and roots of highly productive sugarcane-producing regions; Brazil | Freitas et al. 2022 |
Prokaryota | Bacillus Amyloliquefaciens | | commercial strain | Heenan-Daly et al. 2021 |
Prokaryota | Bacillus Toyonensis | | isolate from Irish potato soils | Heenan-Daly et al. 2021 |
Prokaryota | Bacillus Mycoides | | isolate from Irish potato soils | Heenan-Daly et al. 2021 |
Prokaryota | Serratia Fonticola | | isolate from Irish potato soils | Heenan-Daly et al. 2021 |
Prokaryota | Serratia Myotis | | isolate from Irish potato soils | Heenan-Daly et al. 2021 |
Prokaryota | Pseudomonas Azotoformans | | isolate from Irish potato soils | Heenan-Daly et al. 2021 |
Prokaryota | Staphylococcus Aureus | | Leibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH | Fitzgerald et al. 2020 |
Prokaryota | Pseudomonas Aeruginosa | | Leibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH | Fitzgerald et al. 2020 |
Prokaryota | Escherichia Coli | | Leibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH | Fitzgerald et al. 2020 |
Prokaryota | Staphylococcus Epidermidis | | strains were provided by Prof. O'Gara at NUI Galway | Fitzgerald et al. 2020 |
Prokaryota | Lysobacter Capsici | antifungal activity against the growth of Pythium ultimum, Rhizoctonia solani and Sclerotinia minor | NA | Vlassi et al. 2020 |
Prokaryota | Staphylococcus Aureus | | American Type Culture Collection | Jenkins and Bean 2020 |
Prokaryota | Staphylococcus Epidermidis | | American Type Culture Collection | Jenkins and Bean 2020 |
Eukaryota | Malassezia Globosa | | Fungal Biodiversity Center (WesterdijkInstitute, Utrecht, The Netherlands) | Rios-Navarro et al. 2023 |
Eukaryota | Malassezia Restricta | | Fungal Biodiversity Center (WesterdijkInstitute, Utrecht, The Netherlands) | Rios-Navarro et al. 2023 |
Eukaryota | Malassezia Sympodialis | | Fungal Biodiversity Center (WesterdijkInstitute, Utrecht, The Netherlands) | Rios-Navarro et al. 2023 |
Prokaryota | Bacillus Cereus | promote fungal hypocrellin A production in Shiraia sp. S9 | isolate and deposite at the China General Microbiological Culture Collection Center (CGMCC) | Xu et al. 2022 |
Prokaryota | Bacillus Sp. | n/a | NA | Zou et al. 2007 |
Prokaryota | Stenotrophomonas Maltophilia | n/a | NA | Zou et al. 2007 |
Prokaryota | Alcaligenes Faecalis | n/a | NA | Zou et al. 2007 |
Prokaryota | Arthrobacter Nitroguajacolicus | n/a | NA | Zou et al. 2007 |
Prokaryota | Lysobacter Gummosus | n/a | NA | Zou et al. 2007 |
Prokaryota | Sporosarcina Ginsengisoli | n/a | NA | Zou et al. 2007 |
Prokaryota | Cytophaga-Flavobacteria-Bacteroides Group | It is involved in fruit fly attraction to bacteria. | NA | Schulz and Dickschat 2007 |
Prokaryota | Chondromyces Crocatus | n/a | NA | Schulz et al. 2004 |
Prokaryota | Cytophaga-Flavobacterium-Bacteroides | n/a | NA | Dickschat et al. 2005_3 |
Prokaryota | Octadecabacter Sp. | n/a | NA | Dickschat et al. 2005_3 |
Prokaryota | Serratia Sp. | n/a | NA | Bruce et al. 2004 |
Eukaryota | Saccharomyces Cerevisiae | n/a | NA | Bruce et al. 2004 |
Prokaryota | Burkholderia Ambifaria | n/a | Burkholderia ambifaria LMG 17828 from root, LMG 19182 from rhizosphere and LMG 19467 from clinical. | Groenhagen et al. 2013 |
Prokaryota | Xanthomonas Campestris | n/a | NA | Weise et al. 2012 |
Prokaryota | Citrobacter Freundii | | American Type Culture Collection | Robacker and Bartelt 1997 |
Prokaryota | Klebsiella Pneumoniae | | American Type Culture Collection | Robacker and Bartelt 1997 |
Prokaryota | Enterobacter Agglomerans | | NA | Robacker and Lauzon 2002 |
Prokaryota | Staphylococcus Aureus | | NA | Robacker and Flath 1995 |
Eukaryota | Fusarium Sp. | | NA | Dickschat 2017 |
Eukaryota | Aspergillus Sp. | | NA | Dickschat 2017 |
Prokaryota | Staphylococcus Sciuri | na | from the gut flora of pea aphid Acyrthosiphon pisum honeydew | Leroy et al. 2011 |
Prokaryota | Arthrobacter Agilis | na | rhizosphere of maize plants | Velázquez-Becerra et al. 2011 |
Prokaryota | Pseudomonas Vranovensis | na | rhizosphere of field-grown potato plants | Hunziker et al. 2015 |
Prokaryota | Pseudomonas Veronii | na | rhizosphere of field-grown potato plants | Hunziker et al. 2015 |
Prokaryota | Pseudomonas Chlororaphis | na | rhizosphere of field-grown potato plants | Hunziker et al. 2015 |
Prokaryota | Pseudomonas Fluorescens | na | rhizosphere of field-grown potato plants | Hunziker et al. 2015 |
Prokaryota | Pseudomonas Frederiksbergensis | na | phyllosphere of field-grown potato plants | Hunziker et al. 2015 |
Prokaryota | Pseudomonas Syringae | na | phyllosphere of field-grown potato plants | Hunziker et al. 2015 |
Prokaryota | Pseudomonas Jessenii | na | phyllosphere of field-grown potato plants | Hunziker et al. 2015 |
Prokaryota | Pseudomonas Aeruginosa | na | na | Briard et al. 2016 |
Eukaryota | Pleurotus Cystidiosus | na | na | Usami et al. 2014 |
Prokaryota | Pseudomonas Putida | na | black pepper root | Sheoran et al. 2015 |
Prokaryota | Pseudomonas Putida | positive influence of the plant root growth and protection against soil-borne pathogens | NA | Sheoran et al. 2015 |
Eukaryota | Aureobasidium Pullulans | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Cryptococcus Wieringae | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Hanseniaspora Uvarum | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Pichia Kudriavzevii | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Pichia Fermentans | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Pichia Kluyveri | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Pichia Membranifaciens | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Saccharomyces Paradoxus | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Torulaspora Delbrueckii | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Pichia Anomala | NA | NA | Mozūraitis et al. 2022 |
Eukaryota | Metschnikowia Pulcherrima | NA | NA | Mozūraitis et al. 2022 |
Prokaryota | Staphylococcus Equorum | NA | NA | Toral et al. 2021 |
Prokaryota | Bacillus Atrophaeus | NA | NA | Toral et al. 2021 |
Prokaryota | Peribacillus Sp. | NA | NA | Toral et al. 2021 |
Prokaryota | Pseudomonas Segetis | NA | NA | Toral et al. 2021 |
Prokaryota | Bacillus Velezensis | NA | NA | Toral et al. 2021 |
Prokaryota | Psychrobacillus Vulpis | NA | NA | Toral et al. 2021 |
Prokaryota | Bacillus Subtilis | NA | NA | Lee et al. 2023 |
| Citrobacter Freundii | | | Tallon et al. 2023 |
| Enterobacter Agglomerans | | | Tallon et al. 2023 |
| Enterobacter Cloacae | | | Tallon et al. 2023 |
| Klebsiella Oxytoca | | | Tallon et al. 2023 |