Results for:
PubChem ID: 31246

Heptan-4-one

Mass-Spectra

Compound Details

Synonymous names
4-Heptanone
Heptan-4-one
123-19-3
Dipropyl ketone
Butyrone
Propyl ketone
Di-n-propyl ketone
4-Oxoheptane
FEMA No. 2546
NSC 8692
9BN582JQ61
NSC-8692
4-Heptanone (natural)
EINECS 204-608-9
UN2710
BRN 1699049
dipropylketon
dipropylketone
UNII-9BN582JQ61
AI3-15181
HSDB 7908
heptane-4-one
?4-Heptanone
MFCD00009403
4-Heptanone, 98%
4-HEPTANONE [FHFI]
SCHEMBL25174
DIPROPYL KETONE [MI]
4-01-00-03323 (Beilstein Handbook Reference)
(n-C3H7)2CO
SCHEMBL8508397
SCHEMBL9188666
WLN: 3V3
4-Heptanone, >=97%, FG
DTXSID6047650
4-Heptanone, analytical standard
CHEBI:89484
AMY3807
NSC8692
BBL009715
LMFA12000118
STL141080
AKOS000118993
MCULE-1621649928
UN 2710
BP-12815
VS-02154
H0039
NS00012348
EN300-19142
Dipropyl ketone [UN2710] [Flammable liquid]
A805025
J-004897
J-515446
Q1287920
InChI=1/C7H14O/c1-3-5-7(8)6-4-2/h3-6H2,1-2H
Microorganism:

Yes

IUPAC nameheptan-4-one
SMILESCCCC(=O)CCC
InchiInChI=1S/C7H14O/c1-3-5-7(8)6-4-2/h3-6H2,1-2H3
FormulaC7H14O
PubChem ID31246
Molweight114.19
LogP1.6
Atoms8
Bonds4
H-bond Acceptor1
H-bond Donor0
Chemical Classificationketones
CHEBI-ID89484
Supernatural-IDSN0121626

mVOC Specific Details

Boiling Point
DegreeReference
144 °C peer reviewed
Volatilization
The Henry's Law constant for dipropyl ketone is estimated as 2.4X10-4 atm-cu m/mole(SRC) derived from its vapor pressure, 5.2 mm Hg at 20 deg C(1), and water solubility, 3.19X10+3 mg/L(2). This Henry's Law constant indicates that dipropyl ketone is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3.7 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 5.4 days(SRC). Dipropyl ketone's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of dipropyl ketone from dry soil surfaces may exist(SRC) based upon its vapor pressure(1).
Literature: (1) Lewis RJ Sr; Hawley's Condensed Chemical Dictionary 15th ed., New York, NY: John Wiley & Sons, Inc., p. 468 (2007) (2) Yalkowsky SH, He Y; Handbook of aqueous solubility data. Boca Raton, FL: CRC Press p.425 (2003) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The Koc of dipropyl ketone is estimated as 178(SRC), using a log Kow of 2.04(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that dipropyl ketone is expected to have moderate mobility in soil.
Literature: (1) Abraham MH et al; J Pharm Sci 83: 1085-1100 (1994) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Jan, 2010. Available from, as of Feb 15, 2011: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
5.2 mm Hg at 20 deg CLewis, R.J. Sr.; Hawley's Condensed Chemical Dictionary 15th Edition. John Wiley & Sons, Inc. New York, NY 2007., p. 468
MS-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaAspergillus FumigatusNANABazemore et al. 2012
ProkaryotaHaemophilus InfluenzaeNANAFilipiak et al. 2012
ProkaryotaPseudomonas AeruginosaNANAFilipiak et al. 2012
EukaryotaFusarium Acuminatumroots of two species of the Brassicaceae family Microthlaspi perfoliatum and Microthlaspi erraticumSchenkel et al. 2018
EukaryotaFusarium Oxysporumroots of two species of the Brassicaceae family Microthlaspi perfoliatum and Microthlaspi erraticumSchenkel et al. 2018
EukaryotaCandida AlbicansATCC MYA-2876, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida GlabrataATCC 90030, American Type Culture CollectionCosta et al. 2020
ProkaryotaCollimonas Fungivoransn/aNAGarbeva et al. 2014
ProkaryotaBurkholderia Ambifarian/aBurkholderia ambifaria LMG 17828 from root, LMG 19182 from rhizosphere and LMG 19467 from clinical.Groenhagen et al. 2013
ProkaryotaCollimonas Pratensisn/aNAGarbeva et al. 2014
ProkaryotaSerratia Plymuthicanamaize rhizosphere, NetherlandsGarbeva et al. 2014
ProkaryotaPaenibacillus Sp.narhizosphere of Marram grass in sandy dune soils, NetherlandsGarbeva et al. 2014
ProkaryotaPedobacter Sp.narhizosphere of Marram grass in sandy dune soils, NetherlandsGarbeva et al. 2014
EukaryotaAmpelomyces Sp.nanaNaznin et al. 2014
EukaryotaCryptococcus NemorosusNANALjunggren et al. 2019
EukaryotaMetschnikowia AndauensisNANALjunggren et al. 2019
EukaryotaMetschnikowia SaccharicolaNANALjunggren et al. 2019
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaAspergillus FumigatusSDA + ElastinTD/GC-MSno
ProkaryotaHaemophilus InfluenzaeTryptic soya supp. factors X&VTD/GC-MSno
ProkaryotaPseudomonas Aeruginosatryptic soy brothTD/GC-MSno
EukaryotaFusarium AcuminatumMalt extractSPME, GC-MSyes
EukaryotaFusarium OxysporumMalt extractSPME, GC-MSyes
EukaryotaCandida AlbicansYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida GlabrataYGC mediaHS-SPME/GC-GC-ToFMSno
ProkaryotaCollimonas Fungivoranssand supplemented with artificial root exudatesHeadspace trapping/GC-MSno
ProkaryotaBurkholderia AmbifariaLuria-Bertani medium, Malt Extractn/ano
ProkaryotaCollimonas Pratensissand supplemented with artificial root exudatesHeadspace trapping/GC-MSno
ProkaryotaSerratia Plymuthicasand containing artificial root exudatesGC/MSno
ProkaryotaPaenibacillus Sp.sand containing artificial root exudatesGC/MSno
ProkaryotaPedobacter Sp.sand containing artificial root exudatesGC/MSno
EukaryotaAmpelomyces Sp.naSPME-GC/MSno
EukaryotaCryptococcus Nemorosusliquid YPD mediumGC-MSno
EukaryotaMetschnikowia Andauensisliquid YPD mediumGC-MSno
EukaryotaMetschnikowia Saccharicolaliquid YPD mediumGC-MSno