Volatilization | The Henry's Law constant for 2-ethylhexaldehyde is estimated as 8.4X10-4 atm-cu m/mole(SRC) derived from its vapor pressure, 2 mm Hg at 25 deg C(1), and water solubility, 400 mg/L(2). This Henry's Law constant indicates that 2-ethylhexaldehyde is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 4.6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.9 days(SRC). 2-Ethylhexaldehyde's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of 2-ethylhexaldehyde from dry soil surfaces may exist(SRC) based upon a vapor pressure of 2 mm Hg(1). Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) Hann RW Jr, Jensen PA; Water Quality Characteristics of Hazardous Materials. NTIS-PB-285946 Texas A&M Univ College Station Environmental Engineering Div 1751 pp (1977) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) |
Soil Adsorption | Using a structure estimation method based on molecular connectivity indices(1), the Koc of 2-ethylhexaldehyde can be estimated to be 18(SRC). According to a classification scheme(2), this estimated Koc value suggests that 2-ethylhexaldehyde is expected to have very high mobility in soil(SRC). Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Jan, 2011. Available from, as of Oct 19, 2011: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Swann RL et al; Res Rev 85: 17-28 (1983) |