Volatilization | The Henry's Law constant for n-decane is estimated as 5.15 atm-cu m/mole(SRC) derived from its vapor pressure, 1.43 mm Hg(1), and water solubility, 0.052 mg/L(2). This Henry's Law constant indicates that n-decane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3.5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.7 days(SRC). n-Decane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Decane is expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC). Biodegradation studies in soil have observed volatilization to be a more important removal process than biodegradation for n-decane(4,5). Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals. Design Inst Phys Prop Data, Amer Inst Chem Eng. New York, NY: Hemisphere Pub. Corp. (1989) (2) Yalkowsky SH et al; Handbook of Aqueous Solubility Data. 2nd ed., Boca Raton, FL: CRC Press, p. 745 (2010) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) Stronguilo ML et al; Chemosphere 29: 272-81 (1994) (5) Dean-Ross D; Bull Environ Contam Toxicol 51: 596-9 (1993) Literature: #First-order evaporation constants of n-decane in 3-mm layer No 2 fuel oil, darkened room, wind speed 21 km/hr: at 5 deg C, 1.19X10-3/min; at 10 deg C, 1.87X10-3/min; at 20 deg C, 3.44X10-3/min; at 30 deg C, 6.98X10-3/min Literature: Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Volumes 1-2. 4th ed. John Wiley & Sons. New York, NY. 2001, p. 655 |
Soil Adsorption | Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-decane can be estimated to be 1500(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-decane is expected to have low mobility in soil. Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 9, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983) |