Volatilization | Based on an estimated Henry's Law constant of 8.48 atm-cu m/mole at 25 deg C(1,SRC), 1-tetradecene is expected to rapidly volatilize from water and moist soil to the atmosphere. The estimated half-life for volatilization from a model river 1 m deep flowing at 1 m/sec with a wind speed of 3 m/sec is 4.1 hrs(2,SRC). Its expected strong adsorption to soil and sediment may attenuate the rate of this process(SRC). The estimated half-life for volatilization from a model pond, which takes into account adsorptive processes, is 7.3 months(3,SRC). The vapor pressure of 1-tetradecene, 1.5X10-2 mm Hg at 25 deg C(4) indicates that volatilization from dry soil will not be an important fate process(SRC). Literature: (1) Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods NY: McGraw-Hill Chapt 15 (1982) (3) USEPA; EXAMS II (1987) (4) Daubert TE, Danner RP; Physical & Thermodynamic Properties of Pure Chemicals NY, NY: Hemisphere Pub Corp (1989) |
Soil Adsorption | Estimated soil adsorption coefficients ranging from 19,700 to 32,300 can be calculated for 1-tetradecene using appropriate regression equations(1) and its estimated water solubility, 4.0X10-4 mg/L at 25 deg C(1,SRC) obtained from a vapor pressure of 1.5X10-2 mm Hg at 25 deg C(2) and estimated Henry's Law constant of 8.48 atm-cu m/mole at 25 deg C(3,SRC), and its estimated octanol/water partition coefficient, 7.3(1,SRC), obtained from its estimated water solubility. These soil adsorption coefficients indicate that 1-tetradecene will be essentially immobile in soil(4). Literature: (1) Lyman WJ et al; Handbook of Chemical Property Estimation Methods NY: McGraw-Hill Chapt 2, 5 & 15 (1982) (2) Daubert TE, Danner RP; Physical & Thermodynamic Properties of Pure Chemicals NY, NY: Hemisphere Pub Corp (1989) (3) Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (4) Swann RL et al; Res Rev 85: 17-28 (1983) |