Results for:
PubChem ID: 12535

Triacontane

Mass-Spectra

Compound Details

Synonymous names
TRIACONTANE
n-Triacontane
638-68-6
CHEBI:31006
UNII-47A73V7096
EINECS 211-349-5
NSC 158661
NSC-158661
47A73V7096
DTXSID0060935
HSDB 8360
MFCD00009410
Triacontane, analytical standard
CH3-(CH2)28-CH3
CH3-[CH2]28-CH3
Triacontane; NSC 158661; n-Triacontane
Triacontane, 98%
n-Triacontane 100 microg/mL in Hexane
CHEMBL1482375
DTXCID9044110
LMFA11000588
N-C-30
NSC158661
STL564700
AKOS024257521
MCULE-1742110241
NCGC00165977-01
AS-48050
DB-054569
CS-0204888
NS00010795
T0594
F17598
Q151058
A387C655-6236-4AC5-80E3-45EDC0B765D1
Microorganism:

Yes

IUPAC nametriacontane
SMILESCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
InchiInChI=1S/C30H62/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h3-30H2,1-2H3
FormulaC30H62
PubChem ID12535
Molweight422.8
LogP15.8
Atoms30
Bonds27
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes saturated hydrocarbons
CHEBI-ID31006
Supernatural-IDSN0178166

mVOC Specific Details

Boiling Point
DegreeReference
451 °C peer reviewed
Volatilization
The Henry's Law constant for triacontane is estimated as 1530 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that triacontane is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 8.1 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The volatilization half-life from a model pond is greater than 2 years when adsorption is considered(3). Triacontane's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Triacontane is not expected to volatilize from dry soil surfaces(SRC) based upon an extrapolated vapor pressure of 2.73X10-11 mm Hg at 25 deg C(4).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 21, 2016: http://www2.epa.gov/tsca-screening-tools (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) US EPA; EXAMS II Computer Simulation (1987) (4) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989)
Solubility
In water, 5.04X10-11 mg/L at 25 deg C (est)
Literature: US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 10, 2016: http://www2.epa.gov/tsca-screening-tools
Literature: #Insoluble in water
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-514
Literature: #Soluble in ether; slightly soluble in ethanol; very soluble in benzene
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-514
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of triacontane can be estimated to be 2.4X10+8(SRC). According to a classification scheme(2), this estimated Koc value suggests that triacontane is expected to be immobile in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 21, 2016: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
2.73X10-11 mm Hg at 25 deg C (extrapolated)Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989)
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas Brassicacearumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
EukaryotaAntrodia CinnamomeananaLu et al. 2014
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas BrassicacearumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaKing's B AgarSPME-GC/MSno
EukaryotaAntrodia CinnamomeaPDAGC/MSyes