Boiling Point | Degree | Reference |
---|
415 °C peer reviewed | |
|
Volatilization | The Henry's Law constant for hexacosane is estimated as 490 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This Henry's Law constant indicates that hexacosane is expected to volatilize from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 5.5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 7.6 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The volatilization half-life from a model pond is greater than 2 years when adsorption is considered(3). Hexacosane's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Hexacosane is not expected to volatilize from dry soil surfaces(SRC) based upon an extrapolated vapor pressure of 4.69X10-7 mm Hg at 25 deg C(4). Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 10, 2016: http://www2.epa.gov/tsca-screening-tools (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) US EPA; EXAMS II Computer Simulation (1987) (4) Perry RH, Green D; Perry's Chemical Handbook. Physical and Chemical data. 6th ed., New York, NY: McGraw-Hill (1984) |
Solubility | In water, 6.2X10-09 mg/L at 25 deg C (est) Literature: US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 10, 2016: http://www2.epa.gov/tsca-screening-tools Literature: #Very soluble in benzene, ligroin, chloroform Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-292 |
Soil Adsorption | Using a structure estimation method based on molecular connectivity indices(1), the Koc of hexacosane can be estimated to be 2.1X10+7 (SRC). According to a classification scheme(2), this estimated Koc value suggests that hexacosane is expected to be immobile in soil. Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 10, 2016: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983) |
Vapor Pressure | Pressure | Reference |
---|
4.69X10-07 mm Hg at 25 deg C (extrapolated) | Perry RH, Green D; Perry's Chemical Handbook. Physical and Chemical data. 6th ed., New York, NY: McGraw-Hill (1984) |
|
MS-Links | |
1D-NMR-Links | |
Massbank-Links | |