Results for:
PubChem ID: 11635

Octadecane

Mass-Spectra

Compound Details

Synonymous names
OCTADECANE
n-Octadecane
593-45-3
Octadecan
Oktadekan
UNII-N102P6HAIU
N102P6HAIU
CCRIS 681
1-(4-Chlorophenyl)-1,3-dihydro-2H-indol-2-one
TS Paraffin TS 8
NSC 4201
NSC-4201
EINECS 209-790-3
128271-18-1
AI3-06523
DTXSID9047172
CHEBI:32926
HSDB 8348
EC 209-790-3
CACTUS NORMAL PARAFFIN TS 8
Octadecane, 99%
MFCD00009007
Octadecane, analytical standard
CH3-(CH2)16-CH3
CH3-[CH2]16-CH3
Octadecane, n-
OCTADECANE [INCI]
DTXCID7027172
NSC4201
HY-N6600
LMFA11000581
AKOS015903064
MCULE-2392852814
Octadecane, purum, >=97.0% (GC)
AS-56224
CS-0034329
NS00010781
O0003
Q150900
379E5588-B955-4C35-88E0-21E7DF38DE0E
InChI=1/C18H38/c1-3-5-7-9-11-13-15-17-18-16-14-12-10-8-6-4-2/h3-18H2,1-2H
Microorganism:

Yes

IUPAC nameoctadecane
SMILESCCCCCCCCCCCCCCCCCC
InchiInChI=1S/C18H38/c1-3-5-7-9-11-13-15-17-18-16-14-12-10-8-6-4-2/h3-18H2,1-2H3
FormulaC18H38
PubChem ID11635
Molweight254.5
LogP9.3
Atoms18
Bonds15
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID32926
Supernatural-IDSN0339363

mVOC Specific Details

Boiling Point
DegreeReference
316 °C peer reviewed
Volatilization
The Henry's Law constant for octadecane is estimated as 1.9X10-2 atm-cu m/mole(1) from its vapor pressure, 3.41X10-4 mm Hg(2), and water solubility, 6.0X10-3 mg/L(3). This Henry's Law constant indicates that octadecane is expected to volatilize rapidly from water surfaces(4). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(1) is estimated as 1.7 hours hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(1) is estimated as 6.3 days(SRC). However, adsorption to suspended solids and sediment is expected to attenuate volatilization(SRC). The estimated volatilization half-life from a model pond is greater than 2 years if adsorption is considered(5). Octadecane has a vapor pressure of 3.41X10-4 mm Hg and exists as a liquid under environmental conditions; therefore, octadecane may volatilize from dry soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 9, 2016: http://www2.epa.gov/tsca-screening-tools (2) Jensen TS; PhD Thesis: Petroleum hydrocarbons: compositional changes during biodegradation and transport in unsaturated soil. Roskilde, Denmark: Ministry of the Environment and Energy, National Environmental Research (1994) (3) Yalkowsky SH, et al; Handbook of Aqueous Solubility Data. 2nd ed., Boca Raton, FL: CRC Press p. 1184 (2010) (4) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (5) US EPA; EXAMS II Computer Simulation (1987)
Soil Adsorption
The Koc of octadecane is 2.2X10+7(1). According to a classification scheme(2), this Koc value suggests that octadecane is expected to be immobile in soil.
Literature: (1) Jensen TS; PhD Thesis: Petroleum hydrocarbons: compositional changes during biodegradation and transport in unsaturated soil. Roskilde, Denmark: Ministry of the Environment and Energy, National Environmental Research (1994) (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
3.41X10-4 mm Hg at 25 deg CPerry RH, Green D; Perry's Chemical Handbook. Physical and Chemical Data. 6th ed., New York, NY: McGraw Hill (1984)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
EukaryotaFusarium CulmorumNASchmidt et al. 2018
ProkaryotaBacillus Sp.antifungal activity against Fusarium solaniRhizosphere soil of avocadoGuevara-Avendaño et al. 2019
ProkaryotaStreptomyces Philanthiantifungal activity against Aspergillus parasiticus TISTR 3276 and Aspergillus flavus PSRDC-4NABoukaew and Prasertsan 2020
ProkaryotaStreptococcus Mutans as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
ProkaryotaAzospirillum Brasilensepromotion of performance of Chlorella sorokiniana Shihculture collection DSMZ 1843Amavizca et al. 2017
ProkaryotaBacillus Pumiluspromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaEscherichia Colipromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaPseudomonas Brassicacearumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
ProkaryotaAchromobacter Sp.NANAAlmeida et al. 2022
ProkaryotaBacillus SubtilisNANALee et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
EukaryotaFusarium CulmorumKing`s B agarUPLC-MSno
ProkaryotaBacillus Sp.LB agarSPME-GC-MSno
ProkaryotaStreptomyces Philanthisterile wheat seedsGC-MSno
ProkaryotaStreptococcus MutansBrain-Heart-Infusion agarTenax-trap/GC-MSno
ProkaryotaAzospirillum BrasilenseTSASPME-GCno
ProkaryotaBacillus PumilusTSASPME-GCno
ProkaryotaEscherichia ColiTSASPME-GCno
ProkaryotaPseudomonas BrassicacearumKing's B AgarSPME-GC/MSno
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
ProkaryotaAchromobacter Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
ProkaryotaBacillus SubtilisTryptone soy broth (TSB)HPLCno