Results for:
PubChem ID: 11168

Methyl Thiocyanate

Mass-Spectra

Compound Details

Synonymous names
METHYL THIOCYANATE
556-64-9
Methyl sulfocyanate
Methylrhodanid
thiocyanatomethane
Thiocyanic acid, methyl ester
Methyl rhodanate
Methylthiokyanat
Methane, thiocyanato-
Thiocyanic Acid Methyl Ester
CH3SCN
MeSCN
(methylsulfanyl)carbonitrile
55I23VY6IE
NSC-9368
Methylthiokyanat [Czech]
Methylrhodanid [German]
methylthiocyanate
Methyl Rhodanide
HSDB 5691
NSC 9368
EINECS 209-134-6
BRN 1098357
UNII-55I23VY6IE
methylthiocyanide
AI3-16178
cyanomethyl thioether
METHYL THIOCYANIDE
Methyl thiocyanate, 97%
WLN: NCS1
4-03-00-00327 (Beilstein Handbook Reference)
METHYL THIOCYANATE [MI]
DTXSID5060304
CHEBI:61112
METHYL THIOCYANATE [HSDB]
NSC9368
CS-M0697
THIOCYANIC ACID,METHYL ESTER
MFCD00001830
AKOS009158012
MCULE-3677411130
InChI=1/C2H3NS/c1-4-2-3/h1H
NS00022371
T0201
EN300-43044
Q5928515
Microorganism:

Yes

IUPAC namemethyl thiocyanate
SMILESCSC#N
InchiInChI=1S/C2H3NS/c1-4-2-3/h1H3
FormulaC2H3NS
PubChem ID11168
Molweight73.12
LogP0.9
Atoms4
Bonds0
H-bond Acceptor2
H-bond Donor0
Chemical Classificationnitrogen compounds nitriles thiocyanates sulfur compounds
CHEBI-ID61112
Supernatural-IDSN0403354

mVOC Specific Details

Boiling Point
DegreeReference
130 °C peer reviewed
Volatilization
The Henry's Law constant for methyl thiocyanate is estimated as 4.4X10-5 atm-cu m/mole(SRC) using a fragment constant estimation method(1). This value indicates that methyl thiocyanate will volatilize from water surfaces(2,SRC). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec) is estimated as approximately 20 hours(2,SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec) is estimated as approximately 8.6 days(2,SRC). Methyl thiocyanate's Henry's Law constant(1,SRC) indicates that volatilization from moist soil surfaces is expected (SRC). The potential for volatilization of methyl thiocyanate from dry soil surfaces may exist(SRC) based on a measured vapor pressure of 12 mm Hg(4).
Literature: (1) Meylan WM, Howard PH; Environ Toxicol Chem 10: 1283-93 (1991) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Lyman WJ; p 31 in Environmental Exposure From Chemicals Vol I, Neely WB, Blau GE(eds), Boca Raton, FL: CRC Press (1985) (4) Perry RH, Green D; Perry's Chemical Handbook, Physical and Chemical Data, NY, NY: McGraw Hill 6th ed (1984)
Solubility
VERY SLIGHTLY SOL IN WATER; MISCIBLE WITH ALC, ETHER
Literature: Budavari, S. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, NJ: Merck and Co., Inc., 1996., p. 1045
Literature: #Soluble in carbon tetrachloride.
Literature: Lide, D.R. (ed.). CRC Handbook of Chemistry and Physics. 76th ed. Boca Raton, FL: CRC Press Inc., 1995-1996., p. 3-320
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc for methyl thiocyanate can be estimated to be about 8.3(SRC). According to a recommended classification scheme(2), this estimated Koc value suggests that methyl thiocyanate is expected to have very high mobility in soil(SRC).
Literature: (1) Meylan WM et al; Environ Sci Technol 26: 1560-67 (1992) (2) Swann RL et al; Res Rev 85: 23 (1983)
Vapor Pressure
PressureReference
12.1 mm Hg at 25 deg CPerry RH, Green D; Perry's Chemical Handbook, Physical and Chemical Data, NY,NY: McGraw Hill 6th ed p. 3-58 (1984)

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaBurkholderia CepaciaNANADryahina et al. 2016
ProkaryotaPseudomonas AeruginosaNANADryahina et al. 2016
ProkaryotaStaphylococcus AureusNANADryahina et al. 2016
ProkaryotaStenotrophomonas MaltophiliaNANADryahina et al. 2016
ProkaryotaPseudomonas AeruginosaNANAShestivska et al. 2011
ProkaryotaPseudomonas AeruginosaNANAFitzgerald et al. 2021
ProkaryotaStaphylococcus AureusNANAFitzgerald et al. 2021
ProkaryotaPseudomonas AeruginosaNANABean et al. 2012
ProkaryotaPseudomonas AeruginosaNANADavis et al. 2020
ProkaryotaPseudomonas AeruginosaNANALawal et al. 2018a
ProkaryotaPseudomonas AeruginosaNANAAhmed et al. 2023
ProkaryotaPseudomonas UmsongensisLobaria pulmonaria lichen thalli, AustriaCernava et al. 2015
ProkaryotaPseudomonas Sp.antifungal activity against Thielaviopsis ethacetica mycelial growthBrazilian Biorenewables National Laboratory – LNBR/CNPEM Microorganism Collection, Campinas, SP; isolatedfrom soil and roots of highly productive sugarcane-producing regions; BrazilFreitas et al. 2022
EukaryotaRhizoctonia Solanidirectional root growth of Brassica rapa rootsNAMoisan et al. 2021
ProkaryotaCollimonas Fungivoransn/aNAGarbeva et al. 2014
ProkaryotaSerratia Plymuthicanamaize rhizosphere, NetherlandsGarbeva et al. 2014
ProkaryotaCollimonas Pratensisnarhizosphere of Marram grass in sandy dune soils, NetherlandsGarbeva et al. 2014
ProkaryotaTsukamurella Sp.nanaTyc et al. 2015
ProkaryotaJanthinobacterium Sp.nanaTyc et al. 2015
ProkaryotaStreptomyces Sp.NAJones et al. 2017
EukaryotaRhizoctonia Solanicollection of the Sugar Beet Research Institute, Bergen op Zoom, The NetherlandsCordovez et al. 2017
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaBurkholderia CepaciaNBSIFT-MSno
ProkaryotaBurkholderia CepaciaMHBSIFT-MSno
ProkaryotaBurkholderia CepaciaBHISIFT-MSno
ProkaryotaPseudomonas AeruginosaMHBSIFT-MSno
ProkaryotaPseudomonas AeruginosaBHISIFT-MSno
ProkaryotaPseudomonas AeruginosaNBSIFT-MSno
ProkaryotaStaphylococcus AureusNBSIFT-MSno
ProkaryotaStaphylococcus AureusMHBSIFT-MSno
ProkaryotaStaphylococcus AureusBHISIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaBHISIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaNBSIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaMHBSIFT-MSno
ProkaryotaPseudomonas AeruginosaMueller-Hinton BrothSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaBHISPME/GC-MSno
ProkaryotaPseudomonas AeruginosaLBSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaTSBSPME/GC-MSno
ProkaryotaStaphylococcus AureusTSBSPME/GC-MSno
ProkaryotaStaphylococcus AureusLBSPME/GC-MSno
ProkaryotaStaphylococcus AureusBHISPME/GC-MSno
ProkaryotaPseudomonas Aeruginosalysogeny brothSPME/GCxGC-MSno
ProkaryotaPseudomonas AeruginosaLB brothSPME/GCxGC-MSno
ProkaryotaPseudomonas AeruginosaNBTD/GC-MSno
ProkaryotaPseudomonas AeruginosaASMTD/GC-MSno
ProkaryotaPseudomonas UmsongensisR2AGC/MS SPMEno
ProkaryotaPseudomonas Sp.LB mediaHS-SPME/GC-MSno
EukaryotaRhizoctonia Solani1/5th PDA mediumGC-MSno
ProkaryotaCollimonas FungivoransHeadspace trapping/GC-MSno
ProkaryotaSerratia Plymuthicasand containing artificial root exudatesGC/MSno
ProkaryotaCollimonas Pratensissand containing artificial root exudatesGC/MSno
ProkaryotaTsukamurella Sp.Tryptic soy broth agarGC/MS-Q-TOFno
ProkaryotaJanthinobacterium Sp.Tryptic soy broth agarGC/MS-Q-TOFno
ProkaryotaStreptomyces Sp.YPD agarGCxGC-TOFMSno
EukaryotaRhizoctonia SolaniPotato Dextrose Agar3Tenax TA / TDGC-MSno