Results for:
PubChem ID: 1068

Methylsulfanylmethane

Mass-Spectra

Compound Details

Synonymous names
dimethyl sulfide
Methyl sulfide
75-18-3
Methane, thiobis-
dimethyl sulphide
dimethylsulfide
Methyl thioether
Dimethylsulphide
2-Thiapropane
Dimethyl thioether
Methyl sulphide
METHYLSULFANYLMETHANE
Methylthiomethane
Dimethylsulfid
(Methylsulfanyl)methane
Methyl monosulfide
Dimethyl monosulfide
Thiobismethane
2-Thiopropane
Methanethiomethane
Thiobis(methane)
Exact-S
Sulfure de methyle
Dimethyl sulfide (natural)
dimethylsulfane
FEMA No. 2746
Methylthiomethyl radical
MFCD00008562
Methane, 1,1'-thiobis-
[SMe2]
QS3J7O7L3U
CHEBI:17437
(CH3)2S
31533-72-9
methylsulfide
Dimethylsulfid [Czech]
Sulfure de methyle [French]
HSDB 356
EINECS 200-846-2
UN1164
UNII-QS3J7O7L3U
BRN 1696847
Methylsulphide
Thiopropane
Thiobis-methane
di-methylsulfide
AI3-25274
Dimethyl sulfane
Sulfide, methyl-
(methylthio)methane
Me2S
REDUCED-DMSO
SMe2
Dimethyl sulfide, 98%
reduced dimethyl sulfoxide
(Methylsulfanyl)methane #
Dimethyl sulfide [UN1164] [Flammable liquid]
Dimethyl sulfoxide(Reduced)
EC 200-846-2
(Me)2S
Dimethyl sulfide, >=99%
4-01-00-01275 (Beilstein Handbook Reference)
CHEMBL15580
DIMETHYL SULFIDE [MI]
METHYL SULFIDE [FHFI]
DIMETHYL SULFIDE [FCC]
DIMETHYL SULFIDE [HSDB]
DTXSID9026398
S(CH3)2
Dimethyl sulfide, >=99%, FCC
Dimethyl sulfide, analytical standard
STL481894
Dimethyl sulfide, >=95.0% (GC)
AKOS009031411
MCULE-4525381422
UN 1164
Dimethyl sulfide, anhydrous, >=99.0%
InChI=1/C2H6S/c1-3-2/h1-2H
M0431
NS00005000
NS00124710
Dimethyl sulfide, puriss., >=99.0% (GC)
C00580
Dimethyl sulfide, natural, >=99%, FCC, FG
Dimethyl sulfide [UN1164] [Flammable liquid]
A838342
Dimethyl sulfide, redistilled, >=99%, FCC, FG
Q423133
Q-100810
Microorganism:

Yes

IUPAC namemethylsulfanylmethane
SMILESCSC
InchiInChI=1S/C2H6S/c1-3-2/h1-2H3
FormulaC2H6S
PubChem ID1068
Molweight62.14
LogP0.9
Atoms3
Bonds0
H-bond Acceptor1
H-bond Donor0
Chemical Classificationsulfides thioethers sulfur compounds
CHEBI-ID17437
Supernatural-IDSN0309416

mVOC Specific Details

Boiling Point
DegreeReference
37.3 °C peer reviewed
Volatilization
The Henry's Law constant for dimethyl sulfide has been measured as 1.61X10-3 atm-cu m/mole(1). This Henry's Law constant indicates that dimethyl sulfide is expected to volatilize rapidly from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 3 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 3 days(SRC). Dimethyl sulfides's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of dimethyl sulfide from dry soil surfaces may exist(SRC) based upon a vapor pressure of 502 mm Hg(3).
Literature: (1) Gaffney, JS et al; Env Sci Tech 21: 519-23 (1987) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation. Vol 4. Design Inst Phys Prop Data, Amer Inst Chem Eng, NY, NY: Hemisphere Pub Corp (1989)
Soil Adsorption
The Koc of dimethyl sulfide is estimated as 6.3(SRC), using a water solubility of 22,000 mg/L(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that dimethyl sulfide is expected to have very high mobility in soil.
Literature: (1) Suzuki T; J Comp-Aided Molec Des 5: 149-66 (1991) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.0. Jan, 2009. Available from http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm as of Oct 1, 2009. (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Literature: #Air-dried, unsterilized moist, and sterilized moist soils exposed to air initially containing 500 ppm dimethyl sulfide adsorbed an avg of 32, 308, and 10 ug dimethyl sulfide/g soil, respectively, in 15 days(1). Time required for complete sorption of dimethyl sulfide by moist soil from air initially containing 100 ppm dimethyl sulfide: soil 1 (Weller) - 1st exposure 150 min, 2nd exposure 100 min, 3rd exposure 95 min; soil 2 (Harps) - 1st exposure 45 min, 2nd exposure 24 min, 3rd exposure 19 min(1). These data suggest that moist soils have a greater tendency to adsorb dimethyl sulfide than dry soils, and that microbial activity in moist soils may be responsible for greater adsorption(1). When natural gas containing 0.5 pounds of dimethyl sulfide per million cubic feet of gas was passed through a bed of pulverized, dry, montmorillonite clay, dimethyl sulfide exhibited a fast breakthrough (2 hours) and a fast build-up rate in effluent gas (85% of influent concn 4 hours after breakthrough), suggesting that dimethyl sulfide does not adsorb to dry soils(2).
Literature: (1) Bremner JM, Banwart WL; Soil Biol Biochem 8: 79-83 (1976) (2) Williams RP; Oper Sect Proc - Am Gas Assoc pp. T29-T37 (1976)
Vapor Pressure
PressureReference
502 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaAspergillus FumigatusNANAChippendale et al. 2014
ProkaryotaBurkholderia CepaciaNANADryahina et al. 2016
ProkaryotaEscherichia ColiNANAAllardyce et al. 2006
ProkaryotaEscherichia ColiNANAAllardyce et al. 2006
ProkaryotaNeisseria MeningitidisNANAAllardyce et al. 2006
ProkaryotaPseudomonas AeruginosaNANAAllardyce et al. 2006
ProkaryotaPseudomonas AeruginosaNANAAllardyce et al. 2006
ProkaryotaPseudomonas AeruginosaNANADryahina et al. 2016
ProkaryotaStaphylococcus AureusNANAAllardyce et al. 2006
ProkaryotaStaphylococcus AureusNANADryahina et al. 2016
ProkaryotaStenotrophomonas MaltophiliaNANADryahina et al. 2016
ProkaryotaStreptococcus PneumoniaeNANAAllardyce et al. 2006
ProkaryotaStreptococcus PneumoniaeNANAAllardyce et al. 2006
ProkaryotaEscherichia ColiNANAHewett et al. 2020
ProkaryotaPseudomonas AeruginosaNANABean et al. 2016
ProkaryotaKlebsiella PneumoniaeNANARees et al. 2016a
ProkaryotaPseudomonas AeruginosaNANABean et al. 2012
ProkaryotaPseudomonas AeruginosaNANADavis et al. 2020
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaHaemophilus InfluenzaeNANAFilipiak et al. 2012
ProkaryotaPseudomonas AeruginosaNANAFilipiak et al. 2012
ProkaryotaPseudomonas AeruginosaNANAAhmed et al. 2023
ProkaryotaStreptococcus PneumoniaeNANAFilipiak et al. 2012
ProkaryotaMycobacterium BovisNANAMcNerney et al. 2012
ProkaryotaEnterobacter CloacaeNALawal et al. 2018
EukaryotaAspergillus Versicolorwild strainsSchleibinger et al. 2005
EukaryotaChaetomium Globosumwild strainsSchleibinger et al. 2005
EukaryotaEurotium Amstelodamiwild strainsSchleibinger et al. 2005
ProkaryotaShigella SonneiChina Center of Industrial Culture collectionWang et al. 2018
ProkaryotaVibrio ParahaemolyticusChina Center of Industrial Culture collectionWang et al. 2018
EukaryotaFusarium OxysporumonionWang et al. 2018
EukaryotaFusarium ProliferatumonionWang et al. 2018
ProkaryotaPseudomonas Fluorescens0Medicago spp. plant rhizospheresHernández-León et al. 2015
ProkaryotaPseudomonas Sp.antifungal activity against Thielaviopsis ethacetica mycelial growthBrazilian Biorenewables National Laboratory – LNBR/CNPEM Microorganism Collection, Campinas, SP; isolatedfrom soil and roots of highly productive sugarcane-producing regions; BrazilFreitas et al. 2022
ProkaryotaPseudomonas AeruginosaNational Collections of Industrial Food and Marine Bacteria, American Type Culture CollectionSlade et al. 2022
EukaryotaTuber Magnatumcollected from natural truffle orchards in Istria (Croatia) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Baranya (Hungary) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Somogy (Hungary) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Abruzzo (Italy) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Kalubara (Serbia) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Srem (Serbia) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaSerendipita IndicaInstitute of Phytopathology, Justus-Liebig-Universität, Gießen, Germany; origin: isolates from sudangrass roots growing in soil-based trap systemsVenneman et al. 2020
EukaryotaSerendipita WilliamsiiInstitute of Phytopathology, Justus-Liebig-Universität, Gießen, Germany; origin: isolates from sudangrass roots growing in soil-based trap systemsVenneman et al. 2020
ProkaryotaAlpha Proteobacterian/aNASchulz and Dickschat 2007
ProkaryotaGamma Proteobacterian/aNASchulz and Dickschat 2007
ProkaryotaAlcaligenes Faecalisn/aNASchulz and Dickschat 2007
ProkaryotaDesulfovibrio Acrylicusn/aNASchulz and Dickschat 2007
ProkaryotaParasporobacterium Paucivoransn/aNASchulz and Dickschat 2007
ProkaryotaLactococcus Sp.n/aNASchulz and Dickschat 2007
ProkaryotaLactobacillus Sp.n/aNASchulz and Dickschat 2007
ProkaryotaClostridium Sp.n/aNAStotzky and Schenck 1976
ProkaryotaCollimonas Fungivoransn/aNAGarbeva et al. 2014
EukaryotaTuber Magnatumn/aItalian geographical areas ( Umbria, Piedmont, Marche, Emilia Romagna, Border region area between Emilia Romagna and Marche, Tuscany, Molise)Gioacchini et al. 2008
EukaryotaTuber Simonean/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Rufumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Mesentericumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Melanosporumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Aestivumn/aAyme Truffe of Grignan, 26230 FranceMarch et al. 2006
EukaryotaTuber Uncinatumn/aFrance, Italy, Switzerland, the UK, Austria, Romania, and HungarySplivallo et al. 2012
ProkaryotaCollimonas Pratensisn/aNAGarbeva et al. 2014
ProkaryotaPseudomonas FluorescensNACheng et al. 2016
EukaryotaFusarium Sp.NABrock et al. 2011
EukaryotaPenicillium Sp.NALarsen 1998
ProkaryotaPseudonocardia ThermophilanasoilWilkins 1996
ProkaryotaSaccharomonospora RectivirgulanasoilWilkins 1996
ProkaryotaStreptomyces Sp.nabreathing zone of a waste collection workerWilkins 1996
ProkaryotaPseudomonas Aeruginosastimulates growth of Aspergillus fumigatusnaBriard et al. 2016
ProkaryotaSerratia Plymuthicanamaize rhizosphere, NetherlandsGarbeva et al. 2014
ProkaryotaPaenibacillus Sp.narhizosphere of Marram grass in sandy dune soils, NetherlandsGarbeva et al. 2014
ProkaryotaPedobacter Sp.narhizosphere of Marram grass in sandy dune soils, NetherlandsGarbeva et al. 2014
ProkaryotaRalstonia SolanacearumnanaSpraker et al. 2014
EukaryotaPenicillium Communenain dry-cured meat products, cheeseSunesson et al. 1995
ProkaryotaSerratia Sp.the results led us to propose a possible new direct long-distance mechanism of action for WT antagonistic F. oxysporum that is mediated by vocsNAMinerdi et al. 2009
EukaryotaTuber Aestivumn/aT. melanosporum was from the cultivated truffle zones in the province and T. aestivum from the natural truffle zones in the same regionCullere et al. 2010
EukaryotaTuber Melanosporumn/aT. melanosporum was from the cultivated truffle zones in the province and T. aestivum from the natural truffle zones in the same regionCullere et al. 2010
ProkaryotaPseudomonas PutidananaSchöller et al. 1997
EukaryotaTuber Mesentericumn/aProf. Mattia Bentivenga (Università di Perugia, Perugia, Italy) and in the fortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Excavatumn/aProf. Mattia Bentivenga (Università di Perugia, Perugia, Italy) and in the fortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Magnatumn/aProf. Mattia Bentivenga (Università di Perugia, Perugia, Italy) and in the fortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Aestivumn/aProf. Mattia Bentivenga (Università di Perugia, Perugia, Italy) and in the fortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Brumalen/aProf. Mattia Bentivenga (Università di Perugia, Perugia, Italy) and in the fortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Melanosporumn/aProf. Mattia Bentivenga (Università di Perugia, Perugia, Italy) and in the fortywoodland of the Basilicata regionMauriello et al. 2004
ProkaryotaPseudomonas AeruginosaclinicPreti et al. 2009
ProkaryotaEnterobacter AgglomeransNARobacker and Lauzon 2002
ProkaryotaClostridium Difficilenastool specimens, from patients infected with clostridium difficileKuppusami et al. 2015
ProkaryotaClostridium DifficilenanaKuppusami et al. 2015
EukaryotaTuber MesentericumNoneNoneMarch et al. 2006
ProkaryotaSerratia Sp.NANAAlmeida et al. 2022
ProkaryotaEnterobacter Sp.NANAAlmeida et al. 2022
ProkaryotaEscherichia ColiNANAAlmeida et al. 2022
ProkaryotaPseudomonas SegetisNANAToral et al. 2021
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaAspergillus FumigatusBHIGC-MSno
ProkaryotaBurkholderia CepaciaMHBSIFT-MSno
ProkaryotaBurkholderia CepaciaNBSIFT-MSno
ProkaryotaBurkholderia CepaciaBHISIFT-MSno
ProkaryotaEscherichia Colihuman bloodSIFT-MSno
ProkaryotaEscherichia ColiBacT/ALERT FASIFT-MSno
ProkaryotaNeisseria Meningitidishuman bloodSIFT-MSno
ProkaryotaPseudomonas Aeruginosahuman bloodSIFT-MSno
ProkaryotaPseudomonas AeruginosaBacT/ALERT FASIFT-MSno
ProkaryotaPseudomonas AeruginosaNBSIFT-MSno
ProkaryotaPseudomonas AeruginosaBHISIFT-MSno
ProkaryotaPseudomonas AeruginosaMHBSIFT-MSno
ProkaryotaStaphylococcus Aureushuman bloodSIFT-MSno
ProkaryotaStaphylococcus AureusMHBSIFT-MSno
ProkaryotaStaphylococcus AureusNBSIFT-MSno
ProkaryotaStaphylococcus AureusBHISIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaNBSIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaMHBSIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaBHISIFT-MSno
ProkaryotaStreptococcus Pneumoniaehuman bloodSIFT-MSno
ProkaryotaStreptococcus PneumoniaeBacT/ALERT FASIFT-MSno
ProkaryotaEscherichia ColiLBSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaLB-LennoxSPME/GC-MSno
ProkaryotaKlebsiella Pneumoniaehuman bloodSPME/GCxGC-MSno
ProkaryotaPseudomonas Aeruginosalysogeny brothSPME/GCxGC-MSno
ProkaryotaPseudomonas AeruginosaLB brothSPME/GCxGC-MSno
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaHaemophilus InfluenzaeTryptic soya supp. factors X&VTD/GC-MSno
ProkaryotaPseudomonas Aeruginosatryptic soy brothTD/GC-MSno
ProkaryotaPseudomonas AeruginosaNBTD/GC-MSno
ProkaryotaStreptococcus PneumoniaeTryptic soyaTD/GC-MSno
ProkaryotaMycobacterium BovisLG + glycerolTD/GC-MS and SIFT-MSno
ProkaryotaEnterobacter CloacaeLevine EMB agar (LEA) (Fluka Analytical, UK)GC-MSno
EukaryotaAspergillus Versicoloringrain (woodchip)SIM/GCMS / Tenaxno
EukaryotaChaetomium Globosumingrain (woodchip)SIM/GCMS / Tenaxno
EukaryotaEurotium Amstelodamiingrain (woodchip)SIM/GCMS / Tenaxno
ProkaryotaShigella SonneiSodium chloride brothSPME, GC-MSno
ProkaryotaVibrio ParahaemolyticusSodium chloride brothSPME, GC-MSno
EukaryotaFusarium OxysporumLiquid onion extract medium (LOM)SPME, GC-MSyes
EukaryotaFusarium ProliferatumLiquid onion extract medium (LOM)SPME, GC-MSyes
ProkaryotaPseudomonas FluorescensNutrient AgarSPME-GC-MSno
ProkaryotaPseudomonas Sp.LB media, DYGS media, ANGLE mediaHS-SPME/GC-MSno
ProkaryotaPseudomonas AeruginosaTS agar/blood agarHS-SPME/GC-MSno
EukaryotaTuber MagnatumGC-MS-Ono
EukaryotaSerendipita IndicaPD agarPTR-TOF-MSno
EukaryotaSerendipita WilliamsiiPD agarPTR-TOF-MSno
ProkaryotaAlpha Proteobacterian/an/ano
ProkaryotaGamma Proteobacterian/an/ano
ProkaryotaAlcaligenes Faecalisn/an/ano
ProkaryotaDesulfovibrio Acrylicusn/an/ano
ProkaryotaParasporobacterium Paucivoransn/an/ano
ProkaryotaLactococcus Sp.n/an/ano
ProkaryotaLactobacillus Sp.n/an/ano
ProkaryotaClostridium Sp.n/an/ano
ProkaryotaCollimonas Fungivoranssand supplemented with artificial root exudatesHeadspace trapping/GC-MSno
EukaryotaTuber Magnatumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Simonean/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Rufumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Mesentericumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Melanosporumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Aestivumn/aPressure balanced head-space sampling and GC/TOF-MSno
EukaryotaTuber Uncinatumn/aSPME-GC-MSno
ProkaryotaCollimonas Pratensissand supplemented with artificial root exudatesHeadspace trapping/GC-MSno
ProkaryotaPseudomonas FluorescensKings B + rif,+kann; PDA GC-Q-TOF-MSno
EukaryotaFusarium Sp.no
EukaryotaPenicillium Sp.no
ProkaryotaPseudonocardia ThermophilaNutrient agar CM3GC/MSno
ProkaryotaSaccharomonospora RectivirgulaNutrient agar CM3GC/MSno
ProkaryotaStreptomyces Sp.Nutrient agar CM3 + 50mg/l actidioneGC/MSno
ProkaryotaPseudomonas Aeruginosaminimal medium/ Brian mediumSPME-GC/MSno
ProkaryotaSerratia Plymuthicasand containing artificial root exudatesGC/MSno
ProkaryotaPaenibacillus Sp.sand containing artificial root exudatesGC/MSno
ProkaryotaPedobacter Sp.sand containing artificial root exudatesGC/MSno
ProkaryotaRalstonia SolanacearumCasamino Acid Peptone Glucose agarSPME-GC/MSno
EukaryotaPenicillium CommuneMEAGC/MSno
ProkaryotaSerratia Sp.LB mediumSPME/GC-MS no
EukaryotaTuber Aestivumn/aGas chromatography-olfactometry (GC-O)no
EukaryotaTuber Melanosporumn/aGas chromatography-olfactometry (GC-O)no
ProkaryotaPseudomonas PutidaAB medium + 1% citrate or 0,02% citrate or 1% glucose +1% casaminoacid GC-FID,GC/MSno
EukaryotaTuber Mesentericumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Excavatumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Aestivumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Brumalen/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Melanosporumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
ProkaryotaPseudomonas AeruginosaBlood agar/chocolate blood agaHS-SPME/GC-MS no
ProkaryotaEnterobacter Agglomeransno
ProkaryotaClostridium Difficilebrain heart infusion agar with 7% horse bloodPTR-ToF-MSno
EukaryotaTuber MesentericumNonePressure balanced head-space sampling and GC/TOF-MSno
ProkaryotaSerratia Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
ProkaryotaEnterobacter Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
ProkaryotaEscherichia ColiLB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
ProkaryotaPseudomonas SegetisMOLPHS-SPME-GC/MSno
ProkaryotaPseudomonas SegetisSchaeffer’s growth (SG) mediumHS-SPME-GC/MSno
ProkaryotaPseudomonas Segetistryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno