Results for:
chemical Classification: saturated

Compound Details

Synonymous names
octane
n-octane
111-65-9
Oktan
Oktanen
Ottani
n-Oktan
Oktanen [Dutch]
Oktan [Polish]
Ottani [Italian]
HSDB 108
UNII-X1RV0B2FJV
X1RV0B2FJV
NSC 9822
EINECS 203-892-1
DTXSID0026882
CHEBI:17590
AI3-28789
NSC-9822
MFCD00009556
DTXCID406882
CH3-[CH2]6-CH3
EC 203-892-1
Heptane, methyl-
Octane, all isomers
CH3-(CH2)6-CH3
octano
Normal octane
normal-Octane
octan
Octanes
Octil
MG8
OTTANE
OCTANE [INCI]
N-OCTANE [HSDB]
OCTANE [MI]
bmse000480
Octane, analytical standard
WLN: 8H
Octane, anhydrous, >=99%
Octane, reagent grade, 98%
n-C8H18
Octane, p.a., 99.0%
CHEMBL134886
NSC9822
Octane; NSC 9822; n-Octane
Tox21_202452
c0044
LMFA11000002
AKOS015904009
MCULE-3248084959
NCGC00249228-01
NCGC00260001-01
CAS-111-65-9
LS-13532
NS00006444
O0022
O0118
O0151
Octane, puriss. p.a., >=99.0% (GC)
C01387
Q150681
J-002613
F0001-0244
EEE64B73-0375-4303-AFD5-0795361807FF
InChI=1/C8H18/c1-3-5-7-8-6-4-2/h3-8H2,1-2H
Octane, electronic grade, >=99.999% metals basis, >=99% (CP)
31372-91-5
9065-92-3
Microorganism:

Yes

IUPAC nameoctane
SMILESCCCCCCCC
InchiInChI=1S/C8H18/c1-3-5-7-8-6-4-2/h3-8H2,1-2H3
FormulaC8H18
PubChem ID356
Molweight114.23
LogP3.9
Atoms8
Bonds5
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes aliphatics aliphatic compounds saturated unsaturated hydrocarbons
CHEBI-ID17590
Supernatural-IDSN0361143

mVOC Specific Details

Boiling Point
DegreeReference
125.62 °C peer reviewed
Volatilization
The Henry's Law constant for n-octane is estimated as 3.2 atm-cu m/mole(SRC) derived from its vapor pressure, 14.1 mm Hg(1), and water solubility, 0.66 mg/L(2). This Henry's Law constant indicates that n-octane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.2 days(SRC). Volatilization from water surfaces may be attenuated by adsorption to suspended solids and sediment in the water column(SRC). The estimated volatilization half-life from a model pond is 11 months if adsorption is considered(4). However, in a study using a jet fuel mixture and sterile freshwater controls from the Escambia River (Florida), a 99% loss of n-octane was attributed to evaporation at 25 deg C(5). n-Octane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The disappearance of n-octane was rapid in soil/water mixture (concentration of soil, 25 g/150 mL)(6); an initial concentration of 0.177 ug/mL n-octane disappeared completely in 5 days using a sterile sandy loam soil with an organic matter content of 5.1%(6). The potential for volatilization of n-octane from dry soil surfaces may exist(SRC) based upon its vapor pressure(1).
Literature: (1) Yaws CL; Handbook of Vapor Pressure. Houston, TX: Gulf Pub Co. 3: 78 (1994) (2) Yalkowsky SH, He Y, eds; Handbook of aqueous solubility data. Boca Raton, FL: CRC Press p. 536 (2003) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987) (5) Spain JC et al; Degrad of Jet Fuel Hydrocarbons by Aquatic Microbial Communities. Tyndall AFB, FL: Air Force Eng Serv Ctr. AFESC/ESL-TR-83-26 (NTIS AD-A139791/8) p 226 (1983) (6) Dean-Ross D; Bull Environ Contam Toxicol 51: 596-99 (1993)
Soil Adsorption
The Koc of n-octane is estimated as 3.1X10+4(SRC), using a log Kow of 5.18(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that n-octane is expected to be immobile in soil. Freundlich absorption coefficients of log 4.04 and log 3.49 were measured in Oberlausitz lignite (11.1% moisture content; 53.5 wt% carbon content; 0.6 wt % nitrogen content) and Pahokee peat soil (10.2% moisture content; 46.1 wt% carbon content; 3.3 wt % nitrogen content), respectively(4). Gaseous transport of volatile n-octane in unsaturated porous media was shown to be influenced by air-water interfacial adsorption and water-partitioning(5). Sorption of n-octane from air to snow was measured, resulting in a sorption coefficient of log -4.41 cu m/sq m at -6.8 deg C(6).
Literature: (1) Miller MM et al; Environ Sci Technol 19:522-9 (1985) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Oct 30, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983) (4) Endo S et al; Environ Sci Technol 42): 5897-5903 (2008) (5) Kim H et al; Environ Sci Technol 35: 4457-62 (2001) (6) Roth CM et al; Environ Sci Technol 38: 4078-84 (2004)
Vapor Pressure
PressureReference
14.1 mm Hg at 25 deg CYaws CL; Handbook of Vapor Pressure. Vol 3: C8-C28 Compounds. Houston, TX: Gulf Pub Co, p. 78 (1994)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium BovisNANAKüntzel et al. 2018
ProkaryotaPseudomonas Aeruginosastimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaPseudomonas Sp.stimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaBacillus Sp.stimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaBrevibacillus Agristimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaAneurinibacillus Aneurinilyticusstimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaArthrobacter Nicotinovoransstimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaErwinia Persicinaavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaPantoea Vagansstimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaSerratia Liquefaciensstimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
ProkaryotaXanthomonas Campestrisn/aNAWeise et al. 2012
ProkaryotaStreptococcus Mutans as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
ProkaryotaPropionibacterium Acidifaciens as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
EukaryotaLaccaria Bicolorn/aNAMueller et al. 2013
EukaryotaPaxillus Involutusn/aNAMueller et al. 2013
EukaryotaArmillaria Mellean/aNAMueller et al. 2013
EukaryotaPholiota Squarrosan/aNAMueller et al. 2013
EukaryotaVerticillium Longisporumn/aNAMueller et al. 2013
EukaryotaTrichoderma Viriden/aNAWheatley et al. 1997
EukaryotaTrichoderma Pseudokoningiin/aNAWheatley et al. 1997
EukaryotaPaecilomyces Variotiinacompost, soils, food productsSunesson et al. 1995
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
EukaryotaSaccharomyces CerevisiaeNANAHarris et al. 2021
Fusarium GraminearumBallot et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium BovisHEYMNTD/GC-MSno
ProkaryotaPseudomonas AeruginosaLB mediaSPME/GC-MSno
ProkaryotaPseudomonas Sp.LB mediaSPME/GC-MSno
ProkaryotaBacillus Sp.LB mediaSPME/GC-MSno
ProkaryotaBrevibacillus AgriLB mediaSPME/GC-MSno
ProkaryotaAneurinibacillus AneurinilyticusLB mediaSPME/GC-MSno
ProkaryotaArthrobacter NicotinovoransLB mediaSPME/GC-MSno
ProkaryotaErwinia PersicinaLB mediaSPME/GC-MSno
ProkaryotaPantoea VagansLB mediaSPME/GC-MSno
ProkaryotaSerratia LiquefaciensLB mediaSPME/GC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
ProkaryotaXanthomonas CampestrisNBIIClosed airflow-system/GC-MS and PTR-MSno
ProkaryotaStreptococcus MutansBrain-Heart-Infusion agarTenax-trap/GC-MSno
ProkaryotaPropionibacterium AcidifaciensBrain-Heart-Infusion agarTenax-trap/GC-MSno
EukaryotaLaccaria BicolorMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MSno
EukaryotaPaxillus InvolutusMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MSno
EukaryotaArmillaria MelleaMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MSno
EukaryotaPholiota SquarrosaMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MSno
EukaryotaVerticillium LongisporumMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MSno
EukaryotaTrichoderma VirideMalt extract/Low mediumGC/MSno
EukaryotaTrichoderma PseudokoningiiMalt extract/Low mediumGC/MSno
EukaryotaPaecilomyces VariotiiDG18,MEAGC/MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
EukaryotaSaccharomyces Cerevisiaemalt extract brothHS-SPME with GC-MSno
Fusarium Graminearumtryptone soy (TS medium; Carl Roth, Karlsruhe, Germany)GC-QQQ-MSno


2,2,4,6,6-pentamethylheptane

Compound Details

Synonymous names
2,2,4,6,6-PENTAMETHYLHEPTANE
13475-82-6
Heptane, 2,2,4,6,6-pentamethyl-
A8289P68Y2
2,2,4,6,6-Pentamethylheptane 100 microg/mL in Acetonitrile
UNII-A8289P68Y2
2,2,4,6,6-pentamethyl-heptane
Permethyl 99A
PMH cpd
EINECS 236-757-0
C12 ISOPARAFFIN
ISODODECANE [INCI]
EC 236-757-0
DTXSID0042034
CHEBI:77509
VKPSKYDESGTTFR-UHFFFAOYSA-
MFCD00026334
AKOS024256485
LS-14162
NS00003896
P0047
GRANRESIN MQI-T50 COMPONENT ISODODECANE
J-018544
Q27147086
InChI=1/C12H26/c1-10(8-11(2,3)4)9-12(5,6)7/h10H,8-9H2,1-7H3
Microorganism:

Yes

IUPAC name2,2,4,6,6-pentamethylheptane
SMILESCC(CC(C)(C)C)CC(C)(C)C
InchiInChI=1S/C12H26/c1-10(8-11(2,3)4)9-12(5,6)7/h10H,8-9H2,1-7H3
FormulaC12H26
PubChem ID26058
Molweight170.33
LogP5.6
Atoms12
Bonds4
H-bond Acceptor0
H-bond Donor0
Chemical Classificationaliphatics saturated
CHEBI-ID77509
Supernatural-IDSN0392838

mVOC Specific Details

Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaEscherichia ColiNANAHewett et al. 2020
ProkaryotaMycobacterium TuberculosisNANAPhillips et al. 2007
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
Lactobacillus PlantarumZhang et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiLBSPME/GC-MSno
ProkaryotaMycobacterium TuberculosisVersaTREKTD/GC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
Lactobacillus PlantarumHabanero pepperGC–IMSno


1-methyl-1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene

Compound Details

Synonymous names
1-Methyldecahydronaphthalene
2958-75-0
DECAHYDRO-1-METHYLNAPHTHALENE
Methyldecalin
1-Methyldecalin
NAPHTHALENE, DECAHYDROMETHYL-
trans-2-Methyl-decahydronaphthalene
1-methyl-1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene
28258-89-1
Methyldekalin [Czech]
Methyldekalin
Decahydromethylnaphthalene
alpha-Methyldecalin
trans-2-Methyldecalin
1-methyldecaline
14398-67-5
4683-95-8
1-METHYL-DECAHYDRONAPHTHALENE
.alpha.-Methyldecalin
DTXSID70880795
NHCREQREVZBOCH-UHFFFAOYSA-N
Naphthalene, decahydro-1-methyl-, (1alpha,4aalpha,8abeta)-
Naphthalene, decahydro-1-methyl-, (1alpha,4abeta,8aalpha)-
AKOS006293412
DB-238287
NS00096191
(1E)-N-HYDROXY-2-PHENYLETHANIMIDAMIDE
Naphthalene,decahydro-1-methyl-(1.alpha.,4a.alpha.,8a.beta.
Naphthalene,decahydro-1-methyl-(1.alpha.,4a.beta.,8a.alpha.
Microorganism:

Yes

IUPAC name1-methyl-1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene
SMILESCC1CCCC2C1CCCC2
InchiInChI=1S/C11H20/c1-9-5-4-7-10-6-2-3-8-11(9)10/h9-11H,2-8H2,1H3
FormulaC11H20
PubChem ID34193
Molweight152.28
LogP4.9
Atoms11
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons cycloalkanes
Supernatural-IDSN0245366

mVOC Specific Details


Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium TuberculosisNANAPhillips et al. 2007
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium TuberculosisVersaTREKTD/GC-MSno


1,4-dimethylcyclohexane

Compound Details

Synonymous names
1,4-DIMETHYLCYCLOHEXANE
cis-1,4-Dimethylcyclohexane
trans-1,4-Dimethylcyclohexane
624-29-3
589-90-2
2207-04-7
Cyclohexane, 1,4-dimethyl-, cis-
Hexahydroxylene
trans-Hexahydro-p-xylene
1,cis-4-Dimethylcyclohexane
Cyclohexane, 1,4-dimethyl-
Cyclohexane, 1,4-dimethyl-, trans-
1,trans-4-Dimethylcyclohexane
1,4-Dimethylcyclohexane, trans-
8NUV3O4B1R
(1S,4S)-1,4-DIMETHYLCYCLOHEXANE
1,4-Dimethylcyclohexane, cis-
NSC-74160
NSC-74162
417GE5869Y
(1R,4R)-1,4-DIMETHYLCYCLOHEXANE
t-1,4-Dimethylcyclohexane
Cyclohexane, trans-1,4-dimethyl-
UNII-4C75P10R7G
UNII-417GE5869Y
1,4-Dimethylcyclohexane, (Z)-
Hexahydro-p-xylene
EINECS 209-663-2
EINECS 210-840-1
p-Dimethylcyclohexane
NSC 44845
NSC 74162
cis-p-hexahydroxylene
cis-hexahydro-p-xylene
trans-p-hexahydroxylene
1,4-dimethyl cyclohexane
1,4-dimethyl-cyclohexane
UNII-8NUV3O4B1R
1,4(cis)-dimethylcyclohexane
(Z)-1,4-dimethylcyclohexane
WLN: L6TJ A1 D1
1,4(trans)-dimethylcyclohexane
Cyclohexane,4-dimethyl-, cis-
Trans-1,4 dimethyl cyclohexane
DTXSID5075284
Cyclohexane, cis-1,4-dimethyl-
Cyclohexane,4-dimethyl-, trans-
CHEBI:165732
CHEBI:167602
CHEBI:167603
4C75P10R7G
DTXSID301025608
DTXSID401015836
DTXSID401294608
NSC44845
NSC74160
NSC74162
cis-1,4-Dimethylcyclohexane, 99%
EINECS 218-622-8
LMFA11000638
MFCD00001508
MFCD00064174
MFCD00064955
NSC 74160
NSC-44845
AKOS015913044
AKOS015915844
AKOS024319569
Methyl, (4-methylcyclohexyl)-, cis-
MCULE-8970080763
TRANS-1,4-DIMETHYL-CYCLOHEXANE
1,4-DIMETHYLCYCLOHEXANE (TRANS)
AS-46786
BS-52912
LS-13501
CYCLOHEXANE, 1,4-DIMETHYL-, (E)
CYCLOHEXANE, 1,4-DIMETHYL-, (Z)
DB-054159
CS-0199036
CS-0454408
D0271
D0700
D1715
NS00034057
NS00080358
NS00083319
D89704
D89914
F10496
trans-1,4-Dimethylcyclohexane, >=98.0% (GC)
J-014464
Q27258413
Q27270796
98105-53-4
Microorganism:

Yes

IUPAC name1,4-dimethylcyclohexane
SMILESCC1CCC(CC1)C
InchiInChI=1S/C8H16/c1-7-3-5-8(2)6-4-7/h7-8H,3-6H2,1-2H3
FormulaC8H16
PubChem ID11523
Molweight112.21
LogP3.8
Atoms8
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons cycloalkanes
CHEBI-ID165732
Supernatural-IDSN0313255

mVOC Specific Details

Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium TuberculosisNANAPhillips et al. 2007
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium TuberculosisVersaTREKTD/GC-MSno


4-ethyl-2,2,6,6-tetramethylheptane

Compound Details

Synonymous names
4-ETHYL-2,2,6,6-TETRAMETHYLHEPTANE
62108-31-0
2,2,6,6-Tetramethyl-4-ethylheptane
Heptane, 4-ethyl-2,2,6,6-tetramethyl-
DTXSID90211168
LMFA11000672
4-Ethyl-2,2,6,6-tetramethylheptane #
DB-367767
NS00095968
4-ETHYL-2,2,6,6-TETRAMETHYL HEPTANE
Microorganism:

Yes

IUPAC name4-ethyl-2,2,6,6-tetramethylheptane
SMILESCCC(CC(C)(C)C)CC(C)(C)C
InchiInChI=1S/C13H28/c1-8-11(9-12(2,3)4)10-13(5,6)7/h11H,8-10H2,1-7H3
FormulaC13H28
PubChem ID43925
Molweight184.36
LogP6.1
Atoms13
Bonds5
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes

mVOC Specific Details


Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium TuberculosisNANAMellors et al. 2018
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium Tuberculosis7H9TD/GCxGC-MSno


2,3,6-trimethylheptane

Compound Details

Synonymous names
2,3,6-TRIMETHYLHEPTANE
Heptane, 2,3,6-trimethyl-
4032-93-3
2,3,6-Trimethylheptane.
DTXSID00871050
NS00096348
Q5651197
Microorganism:

Yes

IUPAC name2,3,6-trimethylheptane
SMILESCC(C)CCC(C)C(C)C
InchiInChI=1S/C10H22/c1-8(2)6-7-10(5)9(3)4/h8-10H,6-7H2,1-5H3
FormulaC10H22
PubChem ID19944
Molweight142.28
LogP4.8
Atoms10
Bonds4
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes

mVOC Specific Details


Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium TuberculosisNANAMellors et al. 2018
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium Tuberculosis7H9TD/GCxGC-MSno


Propylcyclopropane

Compound Details

Synonymous names
PROPYLCYCLOPROPANE
Cyclopropane, propyl-
2415-72-7
Propane, 1-cyclopropyl-
DTXSID20178851
MWVPQZRIWVPJCA-UHFFFAOYSA-N
AKOS006275858
Microorganism:

No

IUPAC namepropylcyclopropane
SMILESCCCC1CC1
InchiInChI=1S/C6H12/c1-2-3-6-4-5-6/h6H,2-5H2,1H3
FormulaC6H12
PubChem ID17014
Molweight84.16
LogP3
Atoms6
Bonds2
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
Supernatural-IDSN0237519

mVOC Specific Details


Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaAspergillus FumigatusNANABazemore et al. 2012
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaAspergillus FumigatusSDA + ElastinTD/GC-MSno


2,4-dimethylheptane

Compound Details

Synonymous names
2,4-DIMETHYLHEPTANE
2213-23-2
Heptane, 2,4-dimethyl-
2,4-dimethylheptane'
heptane, 2,4-dimethyl
AUKVIBNBLXQNIZ-UHFFFAOYSA-
AMY6077
DTXSID10862873
CHEBI:141558
CAA21323
LMFA11000612
MFCD00048738
AKOS028110008
CS-W004343
LS-13715
D1204
NS00120239
F17729
Q2813779
InChI=1/C9H20/c1-5-6-9(4)7-8(2)3/h8-9H,5-7H2,1-4H3
Microorganism:

Yes

IUPAC name2,4-dimethylheptane
SMILESCCCC(C)CC(C)C
InchiInChI=1S/C9H20/c1-5-6-9(4)7-8(2)3/h8-9H,5-7H2,1-4H3
FormulaC9H20
PubChem ID16656
Molweight128.25
LogP4.5
Atoms9
Bonds4
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID141558
Supernatural-IDSN0015700

mVOC Specific Details


Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaEscherichia ColiNANAHewett et al. 2020
EukaryotaMalassezia GlobosaFungal Biodiversity Center (WesterdijkInstitute, Utrecht, The Netherlands)Rios-Navarro et al. 2023
EukaryotaMalassezia RestrictaFungal Biodiversity Center (WesterdijkInstitute, Utrecht, The Netherlands)Rios-Navarro et al. 2023
EukaryotaMalassezia SympodialisFungal Biodiversity Center (WesterdijkInstitute, Utrecht, The Netherlands)Rios-Navarro et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiLBSPME/GC-MSno
EukaryotaMalassezia Globosamodified Dixon agarHS-SPME/GC-MSno
EukaryotaMalassezia Restrictamodified Dixon agarHS-SPME/GC-MSno
EukaryotaMalassezia Sympodialismodified Dixon agarHS-SPME/GC-MSno


Compound Details

Synonymous names
DECANE
124-18-5
n-Decane
Nonane, methyl-
NK85062OIY
73138-29-1
DTXSID6024913
CHEBI:41808
NSC-8781
MFCD00008954
Decyl hydride
Decane, analytical standard
DTXCID704913
CAS-124-18-5
D10
HSDB 63
CCRIS 653
NSC 8781
EINECS 204-686-4
UN2247
BRN 1696981
decan
Decane; Cactus Normal Paraffin N 10; NSC 8781; n-Decane
UNII-NK85062OIY
normal-decane
AI3-24107
Decane, n-
Decane, 99%
DECANE [HSDB]
DECANE [INCI]
Decane, >=95%
SYNTSOL LP 10
EC 204-686-4
4-01-00-00464 (Beilstein Handbook Reference)
Decane, anhydrous, >=99%
CHEMBL134537
QSPL 111
WLN: 10H
n-C10H22
NSC8781
Decane, ReagentPlus(R), >=99%
CACTUS NORMAL PARAFFIN N 10
Tox21_201881
Tox21_300336
LMFA11000568
STL280316
Decane, purum, >=95.0% (GC)
Decane, purum, >=98.0% (GC)
AKOS005145676
MCULE-6071426098
n-Decane 1000 microg/mL in Methanol
UN 2247
s11595
Decane, SAJ special grade, >=99.0%
NCGC00247996-01
NCGC00247996-02
NCGC00254283-01
NCGC00259430-01
63335-87-5
LS-13903
n-Decane [UN2247] [Flammable liquid]
DB-089700
DB-307803
D0011
NS00010712
S0282
S0554
EN300-19466
Q150717
J-005051
J-520211
F1908-0171
DBF497D1-4529-4457-841E-9D33CDF22B1C
InChI=1/C10H22/c1-3-5-7-9-10-8-6-4-2/h3-10H2,1-2H
116372-01-1
Microorganism:

Yes

IUPAC namedecane
SMILESCCCCCCCCCC
InchiInChI=1S/C10H22/c1-3-5-7-9-10-8-6-4-2/h3-10H2,1-2H3
FormulaC10H22
PubChem ID15600
Molweight142.28
LogP5
Atoms10
Bonds7
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID41808
Supernatural-IDSN0066711

mVOC Specific Details

Boiling Point
DegreeReference
174.1 °C peer reviewed
Volatilization
The Henry's Law constant for n-decane is estimated as 5.15 atm-cu m/mole(SRC) derived from its vapor pressure, 1.43 mm Hg(1), and water solubility, 0.052 mg/L(2). This Henry's Law constant indicates that n-decane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3.5 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.7 days(SRC). n-Decane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Decane is expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC). Biodegradation studies in soil have observed volatilization to be a more important removal process than biodegradation for n-decane(4,5).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals. Design Inst Phys Prop Data, Amer Inst Chem Eng. New York, NY: Hemisphere Pub. Corp. (1989) (2) Yalkowsky SH et al; Handbook of Aqueous Solubility Data. 2nd ed., Boca Raton, FL: CRC Press, p. 745 (2010) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) Stronguilo ML et al; Chemosphere 29: 272-81 (1994) (5) Dean-Ross D; Bull Environ Contam Toxicol 51: 596-9 (1993)
Literature: #First-order evaporation constants of n-decane in 3-mm layer No 2 fuel oil, darkened room, wind speed 21 km/hr: at 5 deg C, 1.19X10-3/min; at 10 deg C, 1.87X10-3/min; at 20 deg C, 3.44X10-3/min; at 30 deg C, 6.98X10-3/min
Literature: Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Volumes 1-2. 4th ed. John Wiley & Sons. New York, NY. 2001, p. 655
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-decane can be estimated to be 1500(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-decane is expected to have low mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 9, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
1.43 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaEscherichia ColiNANAFitzgerald et al. 2021
ProkaryotaPseudomonas AeruginosaNANABean et al. 2016
ProkaryotaPseudomonas AeruginosaNANAFitzgerald et al. 2021
ProkaryotaStaphylococcus AureusNANAFitzgerald et al. 2021
ProkaryotaBacillus Toyonensisstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaPseudomonas Azotoformansstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaStreptomyces Salmoniscontrol of postharvest anthracnose disease of chili caused by Colletotrichum gloeosporioides PSU-03Phitsanulok Seed Research and Development Center, Department of Agriculture, Ministry of Agriculture and Cooperatives, ThailanBoukaew et al. 2021
ProkaryotaPseudomonas AeruginosaLeibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHFitzgerald et al. 2020
ProkaryotaStaphylococcus Epidermidisstrains were provided by Prof. O'Gara at NUI GalwayFitzgerald et al. 2020
ProkaryotaStaphylococcus AureusAmerican Type Culture CollectionJenkins and Bean 2020
ProkaryotaStaphylococcus EpidermidisAmerican Type Culture CollectionJenkins and Bean 2020
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaCarnobacterium Divergensn/aNAErcolini et al. 2009
EukaryotaTuber Borchiin/aFortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaTuber Brumalen/aFortywoodland of the Basilicata regionMauriello et al. 2004
EukaryotaCladosporium CladosporioidesNAHedlund et al. 1995
EukaryotaCladosporium HerbarumNAHedlund et al. 1995
EukaryotaPenicillium SpinulosumNAHedlund et al. 1995
ProkaryotaBacillus Subtilistriggers induced systemic resistance (ISR) in ArabidopsisnaRyu et al. 2004
ProkaryotaBacillus Amyloliquefacienstriggers induced systemic resistance (ISR) in ArabidopsisnaRyu et al. 2004
EukaryotaTuber Excavatumn/aFortywoodland of the Basilicata regionMauriello et al. 2004
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
Meyerozyma GuilliermondiiXiong et al. 2023
Saccharomyces CerevisiaeQin et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiTSBSPME/GC-MSno
ProkaryotaEscherichia ColiLBSPME/GC-MSno
ProkaryotaEscherichia ColiBHISPME/GC-MSno
ProkaryotaPseudomonas AeruginosaLB-LennoxSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaLBSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaBHISPME/GC-MSno
ProkaryotaPseudomonas AeruginosaTSBSPME/GC-MSno
ProkaryotaStaphylococcus AureusBHISPME/GC-MSno
ProkaryotaStaphylococcus AureusLBSPME/GC-MSno
ProkaryotaStaphylococcus AureusTSBSPME/GC-MSno
ProkaryotaBacillus ToyonensisM+S (Murashige and Skoog) mediaSPME/GC-MSno
ProkaryotaPseudomonas AzotoformansMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaStreptomyces SalmonisGYM agarSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaTSB mediaHS-SPME/GC-MSno
ProkaryotaStaphylococcus EpidermidisTSB mediaHS-SPME/GC-MSno
ProkaryotaStaphylococcus AureusBHI media, LB media, MHB mediaHS-SPME/GC×GC-TOFMSno
ProkaryotaStaphylococcus EpidermidisBHI media, LB media, MHB media, TSB mediaHS-SPME/GC×GC-TOFMSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaCarnobacterium Divergensn/an/ano
EukaryotaTuber Borchiin/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaTuber Brumalen/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
EukaryotaCladosporium CladosporioidesGC-MSno
EukaryotaCladosporium HerbarumGC-MSno
EukaryotaPenicillium SpinulosumGC-MSno
ProkaryotaBacillus SubtilisMurashige and Skoog mediumcapillary GC;GC/MSyes
ProkaryotaBacillus AmyloliquefaciensMurashige and Skoog mediumcapillary GC;GC/MSyes
EukaryotaTuber Excavatumn/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
Meyerozyma GuilliermondiiYEPD, 10 g/L yeast extrac, 20 g/L peptone, 20 g dextroseGC-MS and GC-IMSno
Saccharomyces Cerevisiaefermentation of mulberry wineHS-SPME-GC-MSno


Undecane

Mass-Spectra

Compound Details

Synonymous names
Undecane
N-UNDECANE
1120-21-4
Hendecane
n-Hendecane
CCRIS 3796
Hendekan
Undekan
HSDB 5791
UNII-JV0QT00NUE
JV0QT00NUE
EINECS 214-300-6
NSC 66159
BRN 1697099
DTXSID9021689
CHEBI:46342
AI3-21126
UNDECANE, N-
NSC-66159
DTXCID301689
EC 214-300-6
4-01-00-00487 (Beilstein Handbook Reference)
Decane, methyl-
MFCD00008959
61193-21-3
Undecane, >=99%
Undecane, analytical standard
CH3-(CH2)9-CH3
CH3-[CH2]9-CH3
UND
HALPACLEAN
UN2330
undecan
Undecane, 99%
NIKKO ELACE
UNDECANE [INCI]
Undecane [UN2330] [Flammable liquid]
N-UNDECANE [HSDB]
UNII: JV0QT00NUE
CHEMBL132474
QSPL 058
n-C11H24
HY-N8593
NSC66159
Tox21_300076
LMFA11000591
AKOS005145675
MCULE-7319807036
UN 2330
NCGC00247896-01
NCGC00254001-01
LS-14030
CAS-1120-21-4
DB-041031
CS-0148678
NS00004614
U0002
Q150731
J-002689
17398EC4-D16F-42F6-8A27-60F8EC075469
InChI=1/C11H24/c1-3-5-7-9-11-10-8-6-4-2/h3-11H2,1-2H
Microorganism:

Yes

IUPAC nameundecane
SMILESCCCCCCCCCCC
InchiInChI=1S/C11H24/c1-3-5-7-9-11-10-8-6-4-2/h3-11H2,1-2H3
FormulaC11H24
PubChem ID14257
Molweight156.31
LogP5.6
Atoms11
Bonds8
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID46342
Supernatural-IDSN0333997

mVOC Specific Details

Boiling Point
DegreeReference
195.9 °C peer reviewed
Volatilization
The Henry's Law constant for n-undecane is estimated as 6.1 atm-cu m/mole(SRC) derived from its vapor pressure, 0.412 mm Hg(1), and water solubility, 0.014 mg/L(2). This Henry's Law constant indicates that n-undecane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3.6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 5 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is about 1 month if adsorption is considered(4). n-Undecane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Undecane is not expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1999) (2) Shaw DG; Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C8 to C36. International Union of Pure and Applied Chemistry. Solubility Data Series. Vol 38 p. 326 (1989) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington,DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) USEPA; EXAMS II Computer Simulation (1987)
Solubility
In water, 0.014 mg/L at 25 deg (critical evaluation of all available data)
Literature: Shaw DG; Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C8 to C36. International Union of Pure and Applied Chemistry. Solubility Data Series. Vol 38 p. 326 (1989)
Literature: #In water, 0.0044 mg/L at 25 deg C
Literature: Yalkowsky, S.H., He, Yan, Jain, P. Handbook of Aqueous Solubility Data Second Edition. CRC Press, Boca Raton, FL 2010, p. 806
Literature: #Miscible with ethyl alcohol, ether
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-544
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-undecane can be estimated to be 2,600(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-undecane is expected to have slight mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 16, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 23 (1983)
Vapor Pressure
PressureReference
0.412 mm Hg at 25 deg CDaubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1999)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaKlebsiella PneumoniaeNANAZechman et al. 1986
ProkaryotaPseudomonas AeruginosaNANAZechman et al. 1986
EukaryotaPythium OligandrumN/APythium oligandrum GAQ1 strain was isolated from soil from a field where infected ginger was growing in Laiwu district, Jinan City, Shandong Province, China. China General Microbiological Culture Collection Center (CGMCC) deposit number No. 17470.Sheikh et al. 2023
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas MonteiliiPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas TaiwanensisPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas ProtegensNAMannaa et al. 2018
ProkaryotaPseudomonas Azotoformansstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaStaphylococcus EpidermidisAmerican Type Culture CollectionJenkins and Bean 2020
EukaryotaTrichoderma VirideNAHung et al. 2013
ProkaryotaBacillus Amyloliquefaciensn/aNALee et al. 2012
ProkaryotaBacillus Subtilisn/aNALee et al. 2012
ProkaryotaPaenibacillus Polymyxan/aNALee et al. 2012
EukaryotaFusarium Graminearumn/aNABusko et al. 2014
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaSerratia Sp.n/aNABruce et al. 2004
EukaryotaSaccharomyces Cerevisiaen/aNABruce et al. 2004
ProkaryotaPseudomonas Putidan/aNABlom et al. 2011
ProkaryotaBacillus Pumiluspromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaBacillus Subtilistriggers induced systemic resistance (ISR) in ArabidopsisnaRyu et al. 2004
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaKlebsiella PneumoniaeTSBTD/GC-MSno
ProkaryotaPseudomonas AeruginosaTSBTD/GC-MSno
EukaryotaPythium OligandrumV8 juice agarSPME/GC-MS/MSno
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas MonteiliiMR-VP brothGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
ProkaryotaPseudomonas TaiwanensisNBGS-MSno
ProkaryotaPseudomonas Protegenstryptic soy broth (TSB)gastight syringe, GC-MSno
ProkaryotaPseudomonas AzotoformansM+S (Murashige and Skoog) mediaSPME/GC-MSno
ProkaryotaStaphylococcus EpidermidisBHI media, LB mediaHS-SPME/GC×GC-TOFMSno
EukaryotaTrichoderma VirideMalt extract agar Headspace volatiles collected with colomn/TD-GC-MSyes
ProkaryotaBacillus AmyloliquefaciensTryptic soy agarSPME coupled with GC-MSno
ProkaryotaBacillus SubtilisTryptic soy agarSPME coupled with GC-MSno
ProkaryotaPaenibacillus PolymyxaTryptic soy agarSPME coupled with GC-MSno
EukaryotaFusarium Graminearumyeast extract sucrose agarSPME/GC-MSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaSerratia Sp.n/an/ano
EukaryotaSaccharomyces Cerevisiaen/an/ano
ProkaryotaPseudomonas PutidaMSHeadspace air was trapped in glass Gerstel TDS tubes and analysed by gas chromatography with mass selective detection (GC-MSD)no
ProkaryotaBacillus PumilusTSASPME-GCno
ProkaryotaBacillus SubtilisMurashige and Skoog mediumcapillary GC;GC/MSyes
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno


Heptadecane

Mass-Spectra

Compound Details

Synonymous names
HEPTADECANE
n-Heptadecane
629-78-7
Heptadekan
n-Heptadecane (d36)
H7C0J39XUM
DTXSID7047061
CHEBI:16148
MFCD00009002
NSC-172782
Hexadecane, methyl-
Heptadecane, analytical standard
EINECS 211-108-4
UNII-H7C0J39XUM
NSC 172782
BRN 1738898
AI3-36898
Heptadecane purum
Normal-heptadecane
PJ8
Heptadecane, 99%
Analytical Reagent,95.0%
4-01-00-00548 (Beilstein Handbook Reference)
CHEMBL3185332
DTXCID5027061
Samarium(III)ChlorideHexahydrate
HSDB 8347
CH3-[CH2]15-CH3
Tox21_302278
LMFA11000003
NSC172782
STL355860
AKOS000487450
MCULE-3718944215
Heptadecane, purum, >=98.0% (GC)
NCGC00256101-01
AS-56326
CAS-629-78-7
DB-054356
CS-0197341
H0023
NS00012511
C01816
D97702
Heptadecane; NSC 172782; TS 7; n-Heptadecane
Q150888
43B472DE-3A6B-4855-8457-9D679B0D1C87
InChI=1/C17H36/c1-3-5-7-9-11-13-15-17-16-14-12-10-8-6-4-2/h3-17H2,1-2H
Microorganism:

Yes

IUPAC nameheptadecane
SMILESCCCCCCCCCCCCCCCCC
InchiInChI=1S/C17H36/c1-3-5-7-9-11-13-15-17-16-14-12-10-8-6-4-2/h3-17H2,1-2H3
FormulaC17H36
PubChem ID12398
Molweight240.5
LogP8.8
Atoms17
Bonds14
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID16148
Supernatural-IDSN0242409

mVOC Specific Details

Boiling Point
DegreeReference
303 °C peer reviewed
Volatilization
The Henry's Law constant for heptadecane is estimated as 3.1X10-2 atm-cu m/mole(SRC) derived from its vapor pressure, 2.28X10-4 mm Hg(1), and water solubility, 2.3X10-3 mg/L(2). This Henry's Law constant indicates that heptadecane is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(4) is estimated as 1.6 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(4) is estimated as 6.2 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is greater than 2 years if adsorption is considered(5). Heptadecane's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Heptadecane is not expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) WakehamSG et al; Canadian J Fish Aquat Sci 40: 304-21 (1983) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 14, 2016: http://www2.epa.gov/tsca-screening-tools (5) US EPA; EXAMS II Computer Simulation (1987)
Solubility
In water, 2.3X10-3 mg/L at 25 deg C
Literature: Wakeham SG ET al; Canadian J Fish Aqua Sci 40: 304-21 (1983)
Literature: #Insoluble in water
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-388
Literature: #Slightly soluble in ethanol, carbon tetrachloride; soluble in ethyl ether
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-288
Soil Adsorption
The Koc of heptadecane is 2.5X10+5(1). According to a classification scheme(2), this Koc value suggests that heptadecane is expected to be immobile in soil.
Literature: (1) Wakeham SG et al; Canadian J Fish Aqua Sc 40: 304-21 (1983) (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
2.28X10-4 mm Hg at 25 deg CDaubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaAspergillus NigerNANACosta et al. 2016
EukaryotaCandida AlbicansNANACosta et al. 2016
EukaryotaPenicillium ChrysogenumNANACosta et al. 2016
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas FluorescensPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas PutidaPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas TaiwanensisPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaStaphylococcus AureusNAKarami et al. 2017
EukaryotaFusarium CulmorumNASchmidt et al. 2018
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
EukaryotaCandida AlbicansATCC MYA-2876, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida GlabrataATCC 90030, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida TropicalisATCC 750, American Type Culture CollectionCosta et al. 2020
ProkaryotaErwinia Amylovoraenhances Arabidopsis thaliana shoot and root growthbacterial collection of the LabParmagnani et al. 2023
ProkaryotaCyanobacteria Sp.n/aNASchulz and Dickschat 2007
ProkaryotaCalothrix Parietinan/aNAHoeckelmann et al. 2004
ProkaryotaCalothrix Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaPlectonema Notatumn/aNAHoeckelmann et al. 2004
ProkaryotaPlectonema Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaPhormidium Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaTolypothrix Distortan/aNAHoeckelmann et al. 2004
ProkaryotaRivularia Sp.n/aNAHoeckelmann et al. 2004
ProkaryotaBacillus Megateriumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Brassicacearumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Simiaenarhizosphere of a soybean field in the province of Rajasthan, IndiaVaishnav et al. 2016
ProkaryotaPseudomonas Putidanablack pepper rootSheoran et al. 2015
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaAspergillus NigerYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaCandida AlbicansYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaPenicillium ChrysogenumYeast Glucose ChloramphenicolSPME/GCxGC-MSno
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas FluorescensMR-VP brothGS-MSno
ProkaryotaPseudomonas PutidaNBGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
ProkaryotaPseudomonas RhodesiaeMR-VP brothGS-MSno
ProkaryotaPseudomonas TaiwanensisMR-VP brothGS-MSno
ProkaryotaStaphylococcus AureusMueller Hinton broth (MB), tryptic soy broth (TSB)SPME, DVB/CAR/PDMS, GC-MSno
EukaryotaFusarium CulmorumKing`s B agarUPLC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
EukaryotaCandida AlbicansYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida GlabrataYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida TropicalisYGC mediaHS-SPME/GC-GC-ToFMSno
ProkaryotaErwinia AmylovoraSBSE/GC-MSno
ProkaryotaCyanobacteria Sp.n/an/ano
ProkaryotaCalothrix Parietinan/an/ano
ProkaryotaCalothrix Sp.n/an/ano
ProkaryotaPlectonema Notatumn/an/ano
ProkaryotaPlectonema Sp.n/an/ano
ProkaryotaPhormidium Sp.n/an/ano
ProkaryotaTolypothrix Distortan/an/ano
ProkaryotaRivularia Sp.n/an/ano
ProkaryotaBacillus MegateriumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas BrassicacearumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas SimiaeNutrient broth; King's B agarGC/MSno
ProkaryotaPseudomonas PutidaLuria Bertani AgarSolvent extraction with dichloro methane, GC/MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno


Hexadecane

Mass-Spectra

Compound Details

Synonymous names
HEXADECANE
n-Hexadecane
544-76-3
Cetane
n-Cetane
Hexadekan
Cetan
Zetan
CCRIS 5833
HSDB 6854
F8Z00SHP6Q
NSC 7334
EINECS 208-878-9
BRN 1736592
AI3-06522
UNII-F8Z00SHP6Q
MFCD00008998
DTXSID0027195
CHEBI:45296
HEXADECANE, N-
NSC-7334
PARAFOL 16-97
DTXCID607195
Hexadecane-1-D 98 atom % d
EC 208-878-9
4-01-00-00537 (Beilstein Handbook Reference)
hexadecan
Pentadecane, methyl-
Hexadecane, analytical standard
CH3-(CH2)14-CH3
CH3-[CH2]14-CH3
CNS
Hexadecane; Cetane; NSC 7334; S 6 (alkane); n-Cetane; n-Hexadecane
Hexadecane solution
n-Hexadecane 10 microg/mL in Acetone
Hexadecane, >=99%
HEXADECANE [HSDB]
HEXADECANE [INCI]
Hexadecane, p.a., 99%
UNII: F8Z00SHP6Q
Hexadecane_RamanathanGurudeeban
CHEMBL134994
QSPL 025
QSPL 078
QSPL 116
Hexadecane, anhydrous, >=99%
NSC7334
Hexadecane, ReagentPlus(R), 99%
Tox21_300485
LMFA11000577
STL453674
AKOS025212855
Hexadecane, purum, >=98.0% (GC)
NCGC00164132-01
NCGC00164132-02
NCGC00254306-01
AS-56424
CAS-544-76-3
SY010655
DB-052582
Hexadecane, Vetec(TM) reagent grade, 98%
CS-0152222
H0066
NS00009955
S0288
D97389
A830206
Q150843
5166841B-BF92-4A7D-8CEF-0B01B374ED0E
InChI=1/C16H34/c1-3-5-7-9-11-13-15-16-14-12-10-8-6-4-2/h3-16H2,1-2H
Microorganism:

Yes

IUPAC namehexadecane
SMILESCCCCCCCCCCCCCCCC
InchiInChI=1S/C16H34/c1-3-5-7-9-11-13-15-16-14-12-10-8-6-4-2/h3-16H2,1-2H3
FormulaC16H34
PubChem ID11006
Molweight226.44
LogP8.3
Atoms16
Bonds13
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID45296
Supernatural-IDSN0061743

mVOC Specific Details

Boiling Point
DegreeReference
286.9 °C peer reviewed
Volatilization
The Henry's Law constant for hexadecane is estimated as 21 atm-cu m/mole(SRC) derived from its vapor pressure, 0.00149 mm Hg(1), and water solubility, 2.1X10-5 mg/L(2). This Henry's Law constant indicates that hexadecane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 4 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 6 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is approximately 24 months if adsorption is considered(4). n-Hexadecane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Hexadecane is not expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Dhemicals: Data Compilation. Design Institute for Physical Property Data, American Institute of Chemical Engineers. Taylor & Francis, Washington, DC (1999) (2) Coates M et al; Environ Sci Technol 19: 628-32 (1985) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of hexadecane can be estimated to be 53,000(SRC). According to a classification scheme(2), this estimated Koc value suggests that hexadecane is expected to be immobile in soil(SRC). From the experimental value of Freundlich adsorption constants and organic carbon contents in three Canadian soils (Wendover 16.2% OC; Vaudreil 10.0% OC; Grimsby 1.0% OC)(3), Koc values can be estimated to be in the range of approximately 50-400(SRC). The experimental data of other investigators suggest that less than 20% of hexadecane from solution is adsorbed in soil, sludge and sediment(4-6). However, in all the adsorption experiments(3-6), the concentration of hexadecane solution used for the adsorption study far exceeded the aqueous solubility of hexadecane making the results questionable(SRC).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 17, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 23 (1983) (3) Nathwani JS, Phillips CR; Chemosphere 6: 157-62 (1977) (4) Meyers PA, Quinn JG; Nature 244: 23-4 (1973) (5) Kanatharana P, Grob RL; J Environ Sci Health A18: 59-77 (1985) (6) Lee RF; pp. 611-6 in Proc 1977 Oil Spill Conf. New Orleans, LA: American Petroleum Institute (1977)
Vapor Pressure
PressureReference
0.00149 mm Hg at 25 deg CDaubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1999)
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
EukaryotaAspergillus NigerNANACosta et al. 2016
EukaryotaCandida AlbicansNANACosta et al. 2016
EukaryotaPenicillium ChrysogenumNANACosta et al. 2016
ProkaryotaEscherichia ColiNANADixon et al. 2022
EukaryotaPythium OligandrumN/APythium oligandrum GAQ1 strain was isolated from soil from a field where infected ginger was growing in Laiwu district, Jinan City, Shandong Province, China. China General Microbiological Culture Collection Center (CGMCC) deposit number No. 17470.Sheikh et al. 2023
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas FluorescensPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
EukaryotaFusarium CulmorumNASchmidt et al. 2018
EukaryotaPleurotus OstreatusAgriculture Research Center, Giza, EgyptHamad et al. 2022
ProkaryotaBacillus Subtilisantibacterial activity against growth of Ralstonia solanacearumPlant Bacteriology Lab, Division of Plant Pathology, Indian Council of Agricultural Research - Indian Agricultural Research Institute, New DelhiKashyap et al. 2022
ProkaryotaPseudomonas Fluorescensantibacterial activity against growth of Ralstonia solanacearumPlant Bacteriology Lab, Division of Plant Pathology, Indian Council of Agricultural Research - Indian Agricultural Research Institute, New DelhiKashyap et al. 2022
ProkaryotaBacillus Amyloliquefaciensstimulate growth of Solanum tuberosumcommercial strainHeenan-Daly et al. 2021
ProkaryotaBacillus Toyonensisisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaBacillus Mycoidesstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaSerratia Fonticolastimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaSerratia Myotisstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaPseudomonas Azotoformansstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaBacillus Cereuspromote fungal hypocrellin A production in Shiraia sp. S9isolate and deposite at the China General Microbiological Culture Collection Center (CGMCC)Xu et al. 2022
ProkaryotaCyanobacteria Sp.n/aNASchulz and Dickschat 2007
ProkaryotaBacillus Simplexn/aNAGu et al. 2007
ProkaryotaBacillus Subtilisn/aNAGu et al. 2007
ProkaryotaBacillus Weihenstephanensisn/aNAGu et al. 2007
ProkaryotaMicrobacterium Oxydansn/aNAGu et al. 2007
ProkaryotaStenotrophomonas Maltophilian/aNAGu et al. 2007
ProkaryotaStreptomyces Lateritiusn/aNAGu et al. 2007
ProkaryotaSerratia Marcescensn/aNAGu et al. 2007
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
EukaryotaFusarium Graminearumn/aNABusko et al. 2014
ProkaryotaArthrobacter Agilisnarhizosphere of maize plantsVelázquez-Becerra et al. 2011
ProkaryotaBacillus Megateriumnarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaPseudomonas Putidanarhizosphere of bean plants, southern ItalyGiorgio et al. 2015
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
ProkaryotaBacillus SubtilisNANALee et al. 2023
Saccharomyces CerevisiaeQin et al. 2024
Staphylococcus AureusWang et al. 2023
Pediococcus AcidilacticiMockus et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
EukaryotaAspergillus NigerYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaCandida AlbicansYeast Glucose ChloramphenicolSPME/GCxGC-MSno
EukaryotaPenicillium ChrysogenumYeast Glucose ChloramphenicolSPME/GCxGC-MSno
ProkaryotaEscherichia ColiLBTD/GC-MSno
EukaryotaPythium OligandrumV8 juice agarSPME/GC-MS/MSyes
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas FluorescensMR-VP brothGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
EukaryotaFusarium CulmorumKing`s B agarUPLC-MSno
EukaryotaPleurotus OstreatusGC-MSno
ProkaryotaBacillus SubtilisLB agarGC-MSno
ProkaryotaPseudomonas FluorescensLB agarGC-MSno
ProkaryotaBacillus AmyloliquefaciensMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaBacillus ToyonensisTSB mediaSPME/GC-MSno
ProkaryotaBacillus MycoidesMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaSerratia FonticolaMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaSerratia MyotisMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaPseudomonas AzotoformansM+S (Murashige and Skoog) mediaSPME/GC-MSno
ProkaryotaBacillus CereusLB agarHS-SPME/GC-MSyes
ProkaryotaCyanobacteria Sp.n/an/ano
ProkaryotaBacillus Simplexn/an/ano
ProkaryotaBacillus Subtilisn/an/ano
ProkaryotaBacillus Weihenstephanensisn/an/ano
ProkaryotaMicrobacterium Oxydansn/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaStreptomyces Lateritiusn/an/ano
ProkaryotaSerratia Marcescensn/an/ano
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
EukaryotaFusarium Graminearumyeast extract sucrose agarSPME/GC-MSno
ProkaryotaArthrobacter AgilisLB mediumSPME-GC/MSno
ProkaryotaBacillus MegateriumKing's B AgarSPME-GC/MSno
ProkaryotaPseudomonas PutidaKing's B AgarSPME-GC/MSno
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaBacillus SubtilisTryptone soy broth (TSB)HPLCno
Saccharomyces Cerevisiaefermentation of mulberry wineHS-SPME-GC-MSno
Staphylococcus Aureusraw Shiyang chickenHS-GC-IMS/HS-SPME-GC-MSno
Pediococcus Acidilacticilentils (Lens culinaris)SPME/ICP-MSno


Compound Details

Synonymous names
HEPTANE
n-Heptane
142-82-5
Heptan
Heptyl hydride
Dipropyl methane
Dipropylmethane
Gettysolve-C
Skellysolve C
Heptanen
Eptani
HSDB 90
NSC 62784
Heptanes
EINECS 205-563-8
UNII-456148SDMJ
Heptane (GC grade)
DTXSID6024127
CHEBI:43098
AI3-28784
456148SDMJ
MFCD00009544
NSC-62784
DTXCID004127
EC 205-563-8
HEPTANE (II)
HEPTANE [II]
Pentane, ethyl-
Heptan [Polish]
Eptani [Italian]
Heptanen [Dutch]
normal-Heptane
HP6
UN1206
normal heptane
heptan-e
2ygu
Heptane; Dipropylmethane; Heptyl hydride; NSC 62784; Skellysolve C; n-Heptane
high purity heptane
pharma grade heptane
Heptane, for HPLC
n-Heptane, anhydrous
industry grade heptane
n-Heptane, 99%
n-Heptane HPLC grade
HPLC Grade n-Heptane
n-Heptane, HPLC grade
HEPTANE [HSDB]
HEPTANE [INCI]
Heptane, 99.5%
Heptane, technical grade
HEPTANE (N)
N-HEPTANE [MI]
HEPTANE [USP-RS]
Heptane, anhydrous, 99%
Exxsol heptane (Salt/Mix)
Heptane, p.a., 95%
pharmaceutical grade heptane
Heptane, Laboratory Reagent
Heptane, analytical standard
Heptane, AR, >=99%
Heptane, LR, >=99%
WLN: 7H
Heptane, ASTM, 99.8%
n-C7H16
Heptane, p.a., 95.0%
n-Heptane, Environmental Grade
CHEMBL134658
Heptane, for HPLC, >=96%
Heptane, for HPLC, >=99%
CH3-(CH2)5-CH3
DTXSID60187245
DTXSID80188294
Heptane, HPLC grade, >=99%
Heptane, ReagentPlus(R), 99%
Heptane, purification grade, 99%
Heptane, >=99% (capillary GC)
Heptane, biotech. grade, >=99%
Heptanes (30-40 % n-heptane)
AMY22304
Heptane, for HPLC, >=99.5%
NSC62784
Tox21_201213
Heptane, puriss., >=99% (GC)
LMFA11000575
AKOS009158011
Heptane, p.a., 88.0-92.0%
Heptane, UV HPLC spectroscopic, 95%
MCULE-5817084747
Heptane, SAJ first grade, >=98.0%
Heptane, spectrophotometric grade, 99%
Heptane, SAJ special grade, >=99.0%
NCGC00248959-01
NCGC00258765-01
CAS-142-82-5
Heptane, UV HPLC spectroscopic, 99.5%
Heptanes [UN1206] [Flammable liquid]
LS-13366
n-Heptane 100 microg/mL in Acetonitrile
H0027
H0088
H0491
Heptane, puriss. p.a., >=99.5% (GC)
NS00004625
Q0037
A807968
Heptane, for preparative HPLC, >=99.7% (GC)
Q310957
J-007700
n-Heptane HPLC, UV-IR min. 99%, isocratic grade
n-Heptane, Spectrophotometric Grade, 99% n-Heptan
F1908-0180
B7F4D751-FB0E-4F48-9829-D952CEC36530
Heptane, United States Pharmacopeia (USP) Reference Standard
InChI=1/C7H16/c1-3-5-7-6-4-2/h3-7H2,1-2H
Heptane, Pharmaceutical Secondary Standard; Certified Reference Material
Heptane, PRA grade, 96% n-isomer basis, >=99.9% C7 isomers basis
Heptane, puriss. p.a., Reag. Ph. Eur., >=99% n-heptane basis (GC)
Heptane Fraction, puriss. p.a., Reag. Ph. Eur., >=99% n-heptane basis (GC)
Heptane, puriss., absolute, over molecular sieve (H2O <=0.005%), >=99.5% (GC)
Microorganism:

Yes

IUPAC nameheptane
SMILESCCCCCCC
InchiInChI=1S/C7H16/c1-3-5-7-6-4-2/h3-7H2,1-2H3
FormulaC7H16
PubChem ID8900
Molweight100.2
LogP4.4
Atoms7
Bonds4
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID43098
Supernatural-IDSN0149559

mVOC Specific Details

Boiling Point
DegreeReference
98.38 °C peer reviewed
Volatilization
The Henry's Law constant for n-heptane is estimated as 1.8 atm-cu m/mole(SRC) derived from its vapor pressure, 46 mm Hg(1), and water solubility, 3.4 mg/L(2). This Henry's Law constant indicates that n-heptane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 2.9 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.0 days(SRC). n-Heptane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of n-heptane from dry soil surfaces may exist(SRC) based upon a vapor pressure of 46 mm Hg(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) Yalkowsky,SH et al; Handbook of Aqueous Solubility Data. 2nd Edition. Boca Raton, FL: CRC Press, p. 437 (2010) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Literature: #In a study quantifying the passive volatilization of a synthetic gasoline and its individual components in three air-dried soils over a period of up to 16 days, n-heptane had a volatilization half-life of approximately 10 hours in a loamy sand at a depth of 50 mm(1). Using different soil types, n-heptane, at a depth of 50 mm, volatilized first from sand, followed by a loamy sand and finally a silt loam, showing that as the particle size of the soil decreased and the clay and organic content matter increased, the volatilization rate decreased(1). Complete volatilization of n-heptane from a tray containing a gasoline pool thickness of 7 mm at a temperature of 18.5 deg C occurred after approximately 5.6 hours(1). In a study in which a jet fuel mixture was incubated in freshwater from the Escambia River, FL at 25 deg C, a 99% loss of n-heptane in the controls was attributed to evaporation(2). n-Heptane as a component of missile fuel was also lost to volatilization within 5 hours when incubated with water from the Range Point salt marsh, FL(3). n-Heptane degradation was observed in active and sterile sandy loam treated with JP-4 jet fuel (10 uL per gram of soil)(4). The concentration of n-heptane at 0 time was 0.277 ug/mL in the active soil and 0.235 ug/mL in the sterile soil while the concentrations in both soils were 0 ug/mL when they were tested a second time after 5 days; evaporation was considered to be the primary removal process(4).
Literature: (1) Arthurs P et al; J Soil Contam 4: 123-35 (1995) (2) Spain JC et al; Degrad of Jet Fuel Hydrocarbons by Aquatic Microbial Communities. Tyndall AFB, FL: Air Force Eng Serv Ctr AFESC/ESL-TR-83-26 NTIS AD-A139791/8 p. 226 (1983) (3) Spain JC, Somerville CC; Chemosphere 14: 239-48 (1985) (4) Dean-Ross D; Bull Environ Contam Toxicol 51: 596-99 (1993)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-heptane can be estimated to be 240(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-heptane is expected to have moderate mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of October 1, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
4.60X10+1 mm Hg at 25 deg C /Extrapolated/Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium BovisNANAKüntzel et al. 2018
ProkaryotaPseudomonas ProtegensNAMannaa et al. 2018
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
EukaryotaTrichoderma Viriden/aNAWheatley et al. 1997
EukaryotaTrichoderma Pseudokoningiin/aNAWheatley et al. 1997
EukaryotaPenicillium Communenain dry-cured meat products, cheeseSunesson et al. 1995
ProkaryotaMoraxella Catarrhaliscould serve as potential biomarkers to distinguish between viruses and bacteriaNAAbd El Qader et al. 2015
ProkaryotaHaemophilus Influenzaecould serve as potential biomarkers to distinguish between viruses and bacteriaNAAbd El Qader et al. 2015
ProkaryotaLegionella Pneumophilacould serve as potential biomarkers to distinguish between viruses and bacteriaNAAbd El Qader et al. 2015
ProkaryotaStreptococcus Mutans as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
ProkaryotaLactobacillus Salivarius as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
ProkaryotaPropionibacterium Acidifaciens as a biomarker for a breath test for detection of cariesNAHertel et al. 2016
Mycobacterium UlceransChudy et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium BovisHEYMNTD/GC-MSno
ProkaryotaPseudomonas Protegenstryptic soy broth (TSB)gastight syringe, GC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
EukaryotaTrichoderma VirideMalt extract/Low mediumGC/MSno
EukaryotaTrichoderma PseudokoningiiLow mediumGC/MSno
EukaryotaPenicillium CommuneDG18GC/MSno
ProkaryotaMoraxella Catarrhalisblood cultureSPME/GC-MS no
ProkaryotaHaemophilus Influenzaeblood cultureSPME/GC-MS no
ProkaryotaLegionella Pneumophilablood cultureSPME/GC-MS no
ProkaryotaStreptococcus MutansBrain-Heart-Infusion agarTenax-trap/GC-MSno
ProkaryotaLactobacillus SalivariusBrain-Heart-Infusion agarTenax-trap/GC-MSno
ProkaryotaPropionibacterium AcidifaciensBrain-Heart-Infusion agarTenax-trap/GC-MSno
Mycobacterium UlceransNAGCMS–GP2010no


Dodecane

Mass-Spectra

Compound Details

Synonymous names
DODECANE
n-Dodecane
112-40-3
Dihexyl
Bihexyl
Adakane 12
93685-81-5
N-Dodecan
Duodecane
Ba 51-090453
NSC 8714
CCRIS 661
dodecan
Dodekan
HSDB 5133
EINECS 203-967-9
UNII-11A386X1QH
BRN 1697175
DTXSID0026913
CHEBI:28817
11A386X1QH
NSC-8714
DTXCID906913
EC 203-967-9
4-01-00-00498 (Beilstein Handbook Reference)
93924-07-3
Undecane, methyl-
n-Dodecan [German]
CH3-(CH2)10-CH3
CH3-[CH2]10-CH3
Hydrocarbons, C4,1,3-butadiene-free, polymd., triisobutylene fraction, hydrogenated
129813-67-8
D12
normal dodecane
Normal Paraffin M
EINECS 297-629-8
EINECS 300-199-7
MFCD00008969
Norpar 13
Dodecane, 99%
Alkane C(12)
1-DODECANE
DODECANE [HSDB]
DODECANE [INCI]
C12-N-ALKANE
EC 300-199-7
Dodecane(mixture of isomers)
Dodecane, analytical standard
CHEMBL30959
Density Standard 749 kg/m3
Dodecane, anhydrous, >=99%
WLN: 12H
CH3(CH2)10CH3
NSC8714
Tox21_303615
Dodecane, ReagentPlus(R), >=99%
LMFA11000004
STL280320
Dodecane, technical, >=90% (GC)
AKOS015904160
MCULE-3947157412
NCGC00166012-01
NCGC00257481-01
CAS-112-40-3
DA-16704
LS-14163
CS-0152244
D0968
NS00009666
D5580 n-Dodecane, 1.5% w/w in Isooctane
C08374
Q150744
1310FACD-F2BF-4FD7-BC20-B21DF06EDE79
J-002767
Dodecane, certified reference material, TraceCERT(R)
F0001-0259
Density Standard 749 kg/m3, H&D Fitzgerald Ltd. Quality
InChI=1/C12H26/c1-3-5-7-9-11-12-10-8-6-4-2/h3-12H2,1-2H
Microorganism:

Yes

IUPAC namedodecane
SMILESCCCCCCCCCCCC
InchiInChI=1S/C12H26/c1-3-5-7-9-11-12-10-8-6-4-2/h3-12H2,1-2H3
FormulaC12H26
PubChem ID8182
Molweight170.33
LogP6.1
Atoms12
Bonds9
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID28817
Supernatural-IDSN0350478

mVOC Specific Details

Boiling Point
DegreeReference
216.3 °C peer reviewed
Volatilization
The Henry's Law constant for dodecane is estimated as 8.2 atm-cu m/mole(SRC) derived from its vapor pressure, 0.135 mm Hg(1), and water solubility, 3.7X10-3 mg/L(2). This Henry's Law constant indicates that dodecane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 4 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 5 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is 32 days if adsorption is considered(4). Dodecane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). Dodecane is not expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure(1).
Literature: (1) Kertes AS; Hydrocarbons with Water and Seawater Part II. Hydrocarbons C8 to C31. Solubility Data Series Vol 38. Shaw PC, ed., London, UK: Pergamon Press, 553 pp (1989) (2) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation. Design Inst Phys Prop Data, Amer Inst Chem Eng. New York, NY: Hemisphere Pub Corp 5 Vol (1994) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of dodecane can be estimated to be 4800(SRC). According to a classification scheme(2), this estimated Koc value suggests that dodecane is expected to have slight mobility in soil. In a study conducted to mimic a spill of 1.27 L/sq m, dodecane (present in JP-4 jet fuel) was transported to a depth of 10 cm; at the end of the study (134 days), it was no longer detected(3). In another study, it was determined that dodecane is slowly intercalated into well dried montmorillonite clay(4).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Aug 25, 2016: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983) (3) Ross WD et al; Environmental Fate and Biological Consequences of Chemicals Related to Air Force Activities. NTIS AD-A121 288/5. Dayton, OH: Monsanto Res Corp. pp. 173 (1982) (4) Eltantawy IM, Arnold PW; Nature (London) Phys Sci 237: 123-25 (1972)
Vapor Pressure
PressureReference
0.135 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas AeruginosaNANAKunze et al. 2013
ProkaryotaEscherichia ColiNANAFitzgerald et al. 2021
ProkaryotaPseudomonas AeruginosaNANAFitzgerald et al. 2021
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaMycobacterium TuberculosisNANAKolk et al. 2012
EukaryotaPythium OligandrumN/APythium oligandrum GAQ1 strain was isolated from soil from a field where infected ginger was growing in Laiwu district, Jinan City, Shandong Province, China. China General Microbiological Culture Collection Center (CGMCC) deposit number No. 17470.Sheikh et al. 2023
ProkaryotaPseudomonas FluorescensPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaPseudomonas MonteiliiPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas PutidaPlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaEscherichia ColiNAKarami et al. 2017
ProkaryotaBacillus Velezensismaize seedMassawe et al. 2018
ProkaryotaBacillus Amyloliquefaciensstimulate growth of Solanum tuberosumcommercial strainHeenan-Daly et al. 2021
ProkaryotaBacillus Toyonensisisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaBacillus Mycoidesstimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaStaphylococcus Epidermidisstrains were provided by Prof. O'Gara at NUI GalwayFitzgerald et al. 2020
ProkaryotaStaphylococcus AureusAmerican Type Culture CollectionJenkins and Bean 2020
ProkaryotaStreptomyces Philanthiantifungal activity against Aspergillus parasiticus TISTR 3276 and Aspergillus flavus PSRDC-4NABoukaew and Prasertsan 2020
ProkaryotaStenotrophomonas MaltophiliaclinicPreti et al. 2009
ProkaryotaBacillus Amyloliquefaciensn/aNALee et al. 2012
ProkaryotaBacillus Subtilisn/aNALee et al. 2012
ProkaryotaPaenibacillus Polymyxan/aNALee et al. 2012
EukaryotaFusarium Graminearumn/aNABusko et al. 2014
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaBacillus Sp.n/aNAZou et al. 2007
ProkaryotaStenotrophomonas Maltophilian/aNAZou et al. 2007
ProkaryotaAlcaligenes Faecalisn/aNAZou et al. 2007
ProkaryotaArthrobacter Nitroguajacolicusn/aNAZou et al. 2007
ProkaryotaLysobacter Gummosusn/aNAZou et al. 2007
ProkaryotaSporosarcina Ginsengisolin/aNAZou et al. 2007
ProkaryotaBacillus Simplexn/aNAGu et al. 2007
ProkaryotaBacillus Subtilisn/aNAGu et al. 2007
ProkaryotaBacillus Weihenstephanensisn/aNAGu et al. 2007
ProkaryotaMicrobacterium Oxydansn/aNAGu et al. 2007
ProkaryotaStreptomyces Lateritiusn/aNAGu et al. 2007
ProkaryotaSerratia Marcescensn/aNAGu et al. 2007
ProkaryotaAzospirillum Brasilensepromotion of performance of Chlorella sorokiniana Shihculture collection DSMZ 1843Amavizca et al. 2017
ProkaryotaBacillus Pumiluspromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaEscherichia Colipromotion of performance of Chlorella sorokiniana ShihNAAmavizca et al. 2017
ProkaryotaBacillus AmyloliquefaciensAgriculture University of Nanjing, ChinaTahir et al. 2017
ProkaryotaBacillus AtrophaeusAgriculture University of Nanjing, ChinaTahir et al. 2017
EukaryotaPenicillium Crustosumcompost Fischer et al. 1999
ProkaryotaPseudomonas Simiaenarhizosphere of a soybean field in the province of Rajasthan, IndiaVaishnav et al. 2016
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
EukaryotaSaccharomyces CerevisiaeNANAHarris et al. 2021
ProkaryotaBacillus SubtilisNANALee et al. 2023
Saccharomyces CerevisiaeQin et al. 2024
Fusarium GraminearumBallot et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas AeruginosaLBMCC-IMSno
ProkaryotaEscherichia ColiLBSPME/GC-MSno
ProkaryotaPseudomonas AeruginosaBHISPME/GC-MSno
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaMycobacterium Tuberculosis7H9 OADCTD/GC-MSno
EukaryotaPythium OligandrumV8 juice agarSPME/GC-MS/MSyes
ProkaryotaPseudomonas FluorescensNBGS-MSno
ProkaryotaPseudomonas MonteiliiMR-VP brothGS-MSno
ProkaryotaPseudomonas PutidaNBGS-MSno
ProkaryotaEscherichia ColiMueller Hinton broth (MB), tryptic soy broth (TSB)SPME, DVB/CAR/PDMS, GC-MSno
ProkaryotaBacillus VelezensisMinimal salt mediumSPME, GC-MSno
ProkaryotaBacillus AmyloliquefaciensMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaBacillus ToyonensisTSB mediaSPME/GC-MSno
ProkaryotaBacillus MycoidesMR-VP (Methyl Red-Vogos Proskeur) mediaSPME/GC-MSno
ProkaryotaStaphylococcus EpidermidisTSB mediaHS-SPME/GC-MSno
ProkaryotaStaphylococcus AureusLB mediaHS-SPME/GC×GC-TOFMSno
ProkaryotaStreptomyces Philanthisterile wheat seedsGC-MSno
ProkaryotaStenotrophomonas MaltophiliaBlood agar/chocolate blood agaHS-SPME/GC-MS no
ProkaryotaBacillus AmyloliquefaciensTryptic soy agarSPME coupled with GC-MSno
ProkaryotaBacillus SubtilisTryptic soy agarSPME coupled with GC-MSno
ProkaryotaPaenibacillus PolymyxaTryptic soy agarSPME coupled with GC-MSno
EukaryotaFusarium Graminearumyeast extract sucrose agarSPME/GC-MSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaBacillus Sp.n/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaAlcaligenes Faecalisn/an/ano
ProkaryotaArthrobacter Nitroguajacolicusn/an/ano
ProkaryotaLysobacter Gummosusn/an/ano
ProkaryotaSporosarcina Ginsengisolin/an/ano
ProkaryotaBacillus Simplexn/an/ano
ProkaryotaBacillus Subtilisn/an/ano
ProkaryotaBacillus Weihenstephanensisn/an/ano
ProkaryotaMicrobacterium Oxydansn/an/ano
ProkaryotaStreptomyces Lateritiusn/an/ano
ProkaryotaSerratia Marcescensn/an/ano
ProkaryotaAzospirillum BrasilenseTSASPME-GCno
ProkaryotaBacillus PumilusTSASPME-GCno
ProkaryotaEscherichia ColiTSASPME-GCno
ProkaryotaBacillus AmyloliquefaciensLBSPME-GC-MSno
ProkaryotaBacillus AtrophaeusLBSPME-GC-MSno
EukaryotaPenicillium Crustosumyest extract sucroseTenax/GC-MSno
ProkaryotaPseudomonas SimiaeNutrient broth; King's B agarGC/MSno
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
EukaryotaSaccharomyces Cerevisiaemalt extract brothHS-SPME with GC-MSno
ProkaryotaBacillus SubtilisTryptone soy broth (TSB)HPLCno
Saccharomyces Cerevisiaefermentation of mulberry wineHS-SPME-GC-MSno
Fusarium Graminearumtryptone soy (TS medium; Carl Roth, Karlsruhe, Germany)GC-QQQ-MSno


Compound Details

Synonymous names
NONANE
n-Nonane
111-84-2
Shellsol 140
Nonyl hydride
nonan
Iotrochotin
CCRIS 6081
HSDB 107
Lodyne S
EINECS 203-913-4
UNII-T9W3VH6G10
NSC 72430
T9W3VH6G10
DTXSID9025796
CHEBI:32892
Lodyne S 100
NSC-72430
NONANE-5-C12
DTXCID005796
66039-00-7
EC 203-913-4
MFCD00009574
Heptane, ethyl-
Nonane, analytical standard
144637-82-1
CH3-(CH2)7-CH3
CH3-[CH2]7-CH3
CAS-111-84-2
Nonanes
Nonane; NSC 72430; Nonane-5-C12; Shellsol 140; n-Nonane
n-C9H20
DD9
n-Nonane 10 microg/mL in Cyclohexane
n-Nonane 1000 microg/mL in Methanol
Nonane, 99%
NONANE [HSDB]
NONANE MFC9 H20
Nonane, anhydrous, >=99%
CHEMBL335900
Nonane, ReagentPlus(R), 99%
NSC72430
Tox21_201479
Tox21_303148
LMFA11000579
AKOS015904046
MCULE-1865327912
UN 1920
NCGC00091787-01
NCGC00091787-02
NCGC00257029-01
NCGC00259030-01
LS-13716
DB-041010
DB-063623
N0286
NS00007716
S0281
2-ISOPROPYL-4-METHYL-6-HYDROPYRIMIDINE
A802420
Q150694
W-108667
C8F3CAB9-DAF5-4085-84EB-07C0AB04D3A1
InChI=1/C9H20/c1-3-5-7-9-8-6-4-2/h3-9H2,1-2H
61193-19-9
Microorganism:

Yes

IUPAC namenonane
SMILESCCCCCCCCC
InchiInChI=1S/C9H20/c1-3-5-7-9-8-6-4-2/h3-9H2,1-2H3
FormulaC9H20
PubChem ID8141
Molweight128.25
LogP4.5
Atoms9
Bonds6
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID32892
Supernatural-IDSN0027932

mVOC Specific Details

Boiling Point
DegreeReference
150.47 °C peer reviewed
Volatilization
The Henry's Law constant for n-nonane is estimated as 3.4 atm-cu m/mole(SRC) derived from its vapor pressure, 4.45 mm Hg(1), and water solubility, 22 mg/L)(2). This Henry's Law constant indicates that n-nonane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3.3 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.5 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is 155 days if adsorption is considered(4). n-Nonane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of n-nonane from dry soil surfaces may exist(SRC) based upon the vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, DC: Taylor and Francis (1989) (2) Riddick JA et al; Techniques of Chemistry. 4th ed. Volume II. Organic Solvents. New York, NY: John Wiley and Sons (1985) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987)
Soil Adsorption
The Koc of n-nonane is estimated as 8.0X10+4(SRC), using a log Kow of 5.65(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that n-nonane is expected to be immobile in soil. Freundlich absorption coefficients of log 4.50 and log 4.01 were measured in Oberlausitz lignite (11.1% moisture content; 53.5 wt% carbon content; 0.6 wt % nitrogen content) and Pahokee peat soil (10.2% moisture content; 46.1 wt% carbon content; 3.3 wt % nitrogen content), respectively(4).
Literature: (1) Sangster J; LOGKOW Database. A databank of evaluated octanol-water partition coefficients (Log P). Available from, as of Oct 30, 2013: http://logkow.cisti.nrc.ca/logkow/search.html (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Oct 30, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983) (4) Endo S et al; Environ Sci Technol 42): 5897-5903 (2008)
Vapor Pressure
PressureReference
4.45 mm Hg at 25 deg C /Extrapolated/Daubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium BovisNANAKüntzel et al. 2018
EukaryotaCandida AlbicansATCC MYA-2876, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida GlabrataATCC 90030, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida TropicalisATCC 750, American Type Culture CollectionCosta et al. 2020
ProkaryotaArthrobacter Ureafaciensantifungal effect on the growth of Alternaria alternata, Corynespora cassiicola and Stemphylium lycopersici (pathogens of tomato plants)leaves of tomato plants (Elpida F1, Enza Zaden) with symptoms of Gray leaf spotLópez et al. 2021
ProkaryotaBacillus Velezensisinhibite the growth of Botrytis cinerea VG1, Monilinia fructicola VG 104, Monilinia laxa VG 105, Penicillium digitatum VG 20, Penicillium expansum CECT 20140, Penicillium italicum VG 109NACalvo et al. 2020
ProkaryotaXanthomonas Campestrisn/aNAWeise et al. 2012
EukaryotaGanoderma Lucidumnasaprophytic on deciduous treesCampos Ziegenbein et al. 2006
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaBacillus SimplexReduction of movement or death of Panagrelleus redivivus and Bursaphelenchus xylophilus.NAGu et al. 2007
ProkaryotaBacillus SubtilisReduction of movement or death of Panagrelleus redivivus and Bursaphelenchus xylophilus.NAGu et al. 2007
ProkaryotaBacillus WeihenstephanensisReduction of movement or death of Panagrelleus redivivus and Bursaphelenchus xylophilus.NAGu et al. 2007
ProkaryotaMicrobacterium OxydansReduction of movement or death of Panagrelleus redivivus and Bursaphelenchus xylophilus.NAGu et al. 2007
ProkaryotaStenotrophomonas MaltophiliaReduction of movement or death of Panagrelleus redivivus and Bursaphelenchus xylophilus.NAGu et al. 2007
ProkaryotaStreptomyces LateritiusReduction of movement or death of Panagrelleus redivivus and Bursaphelenchus xylophilus.NAGu et al. 2007
ProkaryotaSerratia MarcescensReduction of movement or death of Panagrelleus redivivus and Bursaphelenchus xylophilus.NAGu et al. 2007
ProkaryotaBurkholderia Tropican/aNATenorio-Salgado et al. 2013
ProkaryotaShewanella Algaeinhibits mycelial growth of Aspergillus flavus and germination of Aspergillus flavus' conidiasea sediment in east China coastGong et al. 2015
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
ProkaryotaStreptomyces ThermocarboxydusNANAPassari et al. 2019
Enterobacter AgglomeransTallon et al. 2023
Enterobacter CloacaeTallon et al. 2023
Klebsiella OxytocaTallon et al. 2023
Mycobacterium UlceransChudy et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium BovisHEYMNTD/GC-MSno
EukaryotaCandida AlbicansYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida GlabrataYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida TropicalisYGC mediaHS-SPME/GC-GC-ToFMSno
ProkaryotaArthrobacter UreafaciensTYB mediaGC-MSno
ProkaryotaBacillus VelezensisMOLP mediaSPME/GC-MSno
ProkaryotaXanthomonas CampestrisNBIIClosed airflow-system/GC-MS and PTR-MSno
EukaryotaGanoderma LucidumnaGC/MSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaBacillus Simplexn/an/ano
ProkaryotaBacillus Subtilisn/an/ano
ProkaryotaBacillus Weihenstephanensisn/an/ano
ProkaryotaMicrobacterium Oxydansn/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaStreptomyces Lateritiusn/an/ano
ProkaryotaSerratia Marcescensn/an/ano
ProkaryotaBurkholderia TropicaPotato dextrose agarHeadspace trapping/ GC-MSno
ProkaryotaShewanella AlgaeNA mediumSPME-GC/MSyes
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaStreptomyces Thermocarboxydusactinomycetes isolation agar (AIA)GC-MSno
Enterobacter Agglomeranstryptone soya broth (TSB) mediaTenax/GC/MSno
Enterobacter Cloacaetryptone soya broth (TSB) mediaTenax/GC/MSno
Klebsiella Oxytocatryptone soya broth (TSB) mediaTenax/GC/MSno
Mycobacterium UlceransNAGCMS–GP2010no


Compound Details

Synonymous names
HEXANE
n-Hexane
110-54-3
Esani
Gettysolve-B
Skellysolve B
Hexyl hydride
hexan
Dipropyl
Hexanen
Heksan
92112-69-1
normal-hexane
Normal hexane
NCI-C60571
HSDB 91
NSC 68472
CCRIS 6247
CHEBI:29021
EINECS 203-777-6
UNII-2DDG612ED8
2DDG612ED8
DTXSID0021917
AI3-24253
NSC-68472
n-C6H14
DTXCID001917
CH3-[CH2]4-CH3
EC 203-777-6
NSC68472
HEXANE (II)
HEXANE [II]
n-Hexan
N-HEXANE (MART.)
N-HEXANE [MART.]
Butane, ethyl-
Esani [Italian]
Heksan [Polish]
Hexanen [Dutch]
HEXANES, MIXTURE OF ISOMERS, FOR SPECTROSCOPY
Hexane, for HPLC, >=95%
CH3-(CH2)4-CH3
MFCD00009520
1-hexane
Hexane; NSC 68472; Skellysolve B; n-Hexane
UN1208
Senofilcon C
HexH
Hexane, for HPLC
Hexane, p.a.
n-Hexane, anhydrous
Hexane (DOT)
n-Hexane, p.a.
n-Hexane HPLC grade
68476-44-8
n-Hexane, ACS grade
Hexane Fraction, purum
Hexane, technical grade
n-Hexane, HPLC Grade
HEXANE [INCI]
HEXANE [USP-RS]
N-HEXANE [HSDB]
HEXANE (N)
Hexane, anhydrous, 95%
N-HEXANE [MI]
Epitope ID:116866
Exxsol Hexane (Salt/Mix)
Hexane, analytical standard
Hexane, p.a., 95%
2CE3AJR3M4
SENOFILCON C [USAN]
Hexane, AR, >=99%
WLN: 6H
Hexane, ACS reagent, 99%
CHEMBL15939
n-Hexane, Environmental grade
Hexane, p.a., 95.0%
Hexane, for HPLC, >=99%
DTXSID70181299
DTXSID80179642
Hexane, purification grade, 95%
n-Hexane, Spectrophotometric Grade
AMY22305
Hexane, ReagentPlus(R), >=99%
Hexane, puriss., >=95% (GC)
Tox21_200777
LMFA11000007
STL445663
Hexane, Laboratory Reagent, >=95%
Hexane, purum, >=98.0% (GC)
n-Hexane 100 microg/mL in Methanol
AKOS000269046
Hexane, UV HPLC spectroscopic, 97%
Hexane, SAJ first grade, >=95.0%
MCULE-3465692202
n-Hexane 1000 microg/mL in Methanol
Hexane, JIS special grade, >=96.0%
Hexanes [UN1208] [Flammable liquid]
NCGC00248828-01
NCGC00258331-01
CAS-110-54-3
Hexane, for HPLC, >=97.0% (GC)
Hexane, spectrophotometric grade, >=95%
H0394
H0405
H0490
H1197
Hexane, suitable for determination of dioxins
NS00003550
A802211
Q150440
J-002443
Hexane, Vetec(TM) reagent grade, anhydrous, >=95%
Hexane, puriss. p.a., ACS reagent, >=99.0% (GC)
680AF2EE-A7B6-479B-BFB3-0F5354069F72
Hexane, >=96.0%, suitable for residual phthalate analysis
InChI=1/C6H14/c1-3-5-6-4-2/h3-6H2,1-2H
n-Hexane, 95% min. glass distilled HRGC/HPLC trace grade
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., >=99% (GC)
Hexane, Pharmaceutical Secondary Standard; Certified Reference Material
Hexane, commercial grade (52% n-hexane, 16% 3-methylpentane, 16% methylcyclopentane)
Hexane, puriss., absolute, over molecular sieve (H2O <=0.01%), >=99.0% (GC)
478799-92-7
50981-41-4
HEXANE, COMMERCIAL GRADE (52% n-HEXANE, 16% 3-METHYLCYCLOPENTANE, 16% METHYLCYCLOPENTANE)
Microorganism:

Yes

IUPAC namehexane
SMILESCCCCCC
InchiInChI=1S/C6H14/c1-3-5-6-4-2/h3-6H2,1-2H3
FormulaC6H14
PubChem ID8058
Molweight86.18
LogP3.9
Atoms6
Bonds3
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID29021
Supernatural-IDSN0393453

mVOC Specific Details

Boiling Point
DegreeReference
68.73 °C peer reviewed
Volatilization
The Henry's Law constant for n-hexane is estimated as 1.80 atm-cu m/mole(SRC) derived from its vapor pressure, 153 mm Hg(1), and water solubility, 9.5 mg/L(2). This Henry's Law constant indicates that n-hexane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 2.7 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 3.7 days(SRC). n-Hexane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of n-hexane from dry soil surfaces may exist(SRC) based upon a vapor pressure(1).
Literature: (1) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Washington, DC: Taylor and Francis (1989) (2) McAuliffe C; J Phys Chem 70: 1267-75 (1966) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-hexane can be estimated to be 130(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-hexane is expected to have high mobility in soil.
Literature: (1) Meylan WM et al; Environ Sci Technol 26: 1560-67 (1992) (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
153 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaMycobacterium BovisNANAKüntzel et al. 2018
ProkaryotaStreptococcus PneumoniaeNANAFilipiak et al. 2012
EukaryotaFusarium OxysporumonionWang et al. 2018
EukaryotaFusarium ProliferatumonionWang et al. 2018
ProkaryotaIgnatzschineria Indicapig (Sus scrofa domesticus) carcassCernosek et al. 2020
ProkaryotaPaenibacillus PolymyxaNAMülner et al. 2021
EukaryotaAspergillus FlavusITEM collection of CNR-ISPA (Research National Council of Italy - Institute of Sciences of Food Production) in Bari, ItalyJosselin et al. 2021
EukaryotaTrichoderma Viriden/aNAWheatley et al. 1997
EukaryotaTrichoderma Pseudokoningiin/aNAWheatley et al. 1997
EukaryotaTuber BorchiiNoneT. melanosporum, T. borchii were collected from northern Italy (Piedmont) and T. indicum from Yunnan and Sichuan Provinces (China). Splivallo et al. 2007b
EukaryotaTuber MelanosporumNoneT. melanosporum, T. borchii were collected from northern Italy (Piedmont) and T. indicum from Yunnan and Sichuan Provinces (China). Splivallo et al. 2007b
EukaryotaSaccharomyces CerevisiaeNANAHarris et al. 2021
EukaryotaPhytophthora CinnamomiN/APhytophthora cinnamomiQiu R et al. 2014
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaMycobacterium BovisHEYMNTD/GC-MSno
ProkaryotaStreptococcus PneumoniaeTryptic soyaTD/GC-MSno
EukaryotaFusarium OxysporumLiquid onion extract medium (LOM)SPME, GC-MSyes
EukaryotaFusarium ProliferatumLiquid onion extract medium (LOM)SPME, GC-MSyes
ProkaryotaIgnatzschineria IndicaNutrient AgarSPME-GC-MSyes
ProkaryotaPaenibacillus PolymyxaLandy mediaHS-SPME/GC-MSno
EukaryotaAspergillus FlavusSNA mediaSPME/GC-MSno
EukaryotaTrichoderma VirideMalt extract/Low mediumGC/MSno
EukaryotaTrichoderma PseudokoningiiMalt extract/Low mediumGC/MSno
EukaryotaTuber BorchiiNoneNoneyes
EukaryotaTuber MelanosporumNoneNoneyes
EukaryotaSaccharomyces Cerevisiaemalt extract brothHS-SPME with GC-MSno
EukaryotaPhytophthora CinnamomiPotato Dextrose AgarSPME/GC-MS/MSno


Compound Details

Synonymous names
PENTANE
n-Pentane
109-66-0
Pentan
Skellysolve A
Pentanen
Pentani
Amyl hydride
Pentanes
Tetrafume
Tetrakil
Tetraspot
Normal Pentane
Caswell No. 642AA
npentane
NSC 72415
HSDB 109
EINECS 203-692-4
EPA Pesticide Chemical Code 098001
UNII-4FEX897A91
DTXSID2025846
CHEBI:37830
AI3-28785
4FEX897A91
ACTH, formylmethionyl-
NSC-72415
DTXCID705846
68476-43-7
EC 203-692-4
MFCD00009498
68476-55-1
68647-60-9
70955-08-7
NCGC00091116-01
PENTANE (MART.)
PENTANE [MART.]
R-601
Pentan [Polish]
Pentane, analytical standard
Pentanen [Dutch]
Pentani [Italian]
107949-95-1
normal-Pentane
n-Pentan
CAS-109-66-0
High purity Pentane
95% N-pentane
99% N-pentane
High purity N-pentane
blowing agent N-pentane
foaming agent N-pentane
Pentane, pentene fraction
UN1265
Pentane 109-66-0
syn-pentane
1-ethylpropane
Pentane; E 0121; NSC 72415; Norpar 5S; Skellysolve A; n-Pentane
trimethylenemethane
Pentane, p.a.
EINECS 270-684-5
EINECS 270-695-5
EINECS 271-960-8
n-Pentane, 95%
n-Pentane, 99%
Pentane, HPLC Grade
Pentane Fraction, purum
n-Pentane Blowing Agent
PENTANE [HSDB]
PENTANE [INCI]
n-Pentane, HPLC Grade
PENTANE [MI]
PENTANE [USP-RS]
EC 270-695-5
Pentane, p.a., 99%
Pentane, purification grade
Pentane, AR, >=99%
Pentane, LR, >=99%
WLN: 5H
UN 1265 (Salt/Mix)
CHEMBL16102
Pentane, anhydrous, >=99%
n-C5H12
Pentane, >=99% (GC)
Pentane, p.a., 99.5%
Pentane, reagent grade, 98%
CH3-(CH2)3-CH3
DTXSID30177996
DTXSID40179628
DTXSID60181228
Pentane, >=99%, HPLC grade
n-Pentane, Spectrophotometric Grade
NSC72415
Pentane, for HPLC, >=99.0%
EINECS 270-654-1
Tox21_111085
Tox21_200248
LMFA11000583
STL301896
Pentane 1000 microg/mL in Methanol
Pentane, purum, >=95.0% (GC)
AKOS009158849
MCULE-4643148765
Pentane, UV HPLC spectroscopic, 99%
n-Pentane 1000 microg/mL in Methanol
Pentane, SAJ first grade, >=96.0%
USEPA/OPP Pesticide Code: 098001
NCGC00091116-02
NCGC00257802-01
Pentane, SAJ special grade, >=99.0%
Pentanes [UN1265] [Flammable liquid]
Pentane, spectrophotometric grade, >=99%
9,11,13-Octadecatriyoic acid methyl ester
NS00008602
P0048
P2621
Pentane, puriss. p.a., >=99.0% (GC)
D91890
EC 270-654-1
Pentane, Laboratory Reagent, >=95.0% (GC)
A802071
Q150429
InChI=1/C5H12/c1-3-5-4-2/h3-5H2,1-2H
EB93985D-C6D5-4EC7-A089-73B41F8B4583
Pentane, United States Pharmacopeia (USP) Reference Standard
Pentane, capillary GC grade, >=98% n-pentane basis, 99.9+% C5 isomers.
Pentane, puriss., absolute, over molecular sieve (H2O <=0.005%), >=99.0% (GC)
AKS
Microorganism:

Yes

IUPAC namepentane
SMILESCCCCC
InchiInChI=1S/C5H12/c1-3-5-4-2/h3-5H2,1-2H3
FormulaC5H12
PubChem ID8003
Molweight72.15
LogP3.4
Atoms5
Bonds2
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID37830
Supernatural-IDSN0263716

mVOC Specific Details

Boiling Point
DegreeReference
36.06 °C peer reviewed
Volatilization
The Henry's Law constant for n-pentane is 1.25 atm-cu m/mole(1). This Henry's Law constant indicates that n-pentane is expected to volatilize rapidly from water surfaces(2). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(2) is estimated as 2.5 hours(3). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(2) is estimated as 3.4 days(3). n-Pentane's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Pentane is expected to volatilize from dry soil surfaces(SRC) based upon a vapor pressure of 514 mm Hg(4).
Literature: (1) Hine J, Mookerjee PK; J Org Chem 40: 292-98 (1975) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (3) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 4, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (4) Daubert TE, Danner RP; Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Washington, DC: Taylor and Francis (1989)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-pentane can be estimated to be 72(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-pentane is expected to have high mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 4, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
514 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaBurkholderia CepaciaBHISIFT-MSno
ProkaryotaBurkholderia CepaciaMHBSIFT-MSno
ProkaryotaBurkholderia CepaciaNBSIFT-MSno
ProkaryotaPseudomonas AeruginosaMHBSIFT-MSno
ProkaryotaPseudomonas AeruginosaBHISIFT-MSno
ProkaryotaPseudomonas AeruginosaNBSIFT-MSno
ProkaryotaStaphylococcus AureusBHISIFT-MSno
ProkaryotaStaphylococcus AureusNBSIFT-MSno
ProkaryotaStaphylococcus AureusMHBSIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaMHBSIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaBHISIFT-MSno
ProkaryotaStenotrophomonas MaltophiliaNBSIFT-MSno
ProkaryotaMycobacterium BovisHEYMNTD/GC-MSno
EukaryotaAscocoryne SarcoidesMinimal mediumPTR-MS and SPME GC-MSno


Compound Details

Synonymous names
BUTANE
n-Butane
106-97-8
Diethyl
Methylethylmethane
butan
Butanen
Butani
Butyl hydride
Butane, pure
HC 600
A 21 (lowing agent)
R 600
CCRIS 2279
HSDB 944
n-Butan
UNII-6LV4FOR43R
EINECS 203-448-7
6LV4FOR43R
E943a
Butane [NF]
n-C4H10
INS NO.943
CHEBI:37808
INS-943
butane phase II
DTXSID7024665
E-943
E 943a
E-943a
EC 203-448-7
Butane (NF)
BUTANE (II)
BUTANE [II]
BUTANE (MART.)
BUTANE [MART.]
R-600
Butanen [Dutch]
Butani [Italian]
68514-31-8
BUTANE (D10)
BUTANE (1-D1)
BUTANE (2-D1)
normal-Butane
UN1011
1,2-dimethyethane
1,2-dimethylethane
1,2-dimethyl-ethane
Butane, 99%
Freon 600
BUTANE [HSDB]
BUTANE [INCI]
BUTANE [FCC]
BUTANE [WHO-DD]
BUTANE [MI]
n-Butane;Methylethylmethane
Hydrocarbon propellant A-17
CHEMBL134702
DTXCID404665
H-C4H9
DTXSID00179629
DTXSID50178046
BCP32076
Butane 2000 microg/mL in Methanol
AKOS015917446
AKOS032949915
UN 1011
68476-42-6
B0677
NS00008355
C21390
D03186
Q134192
Butane, fuel for Micro Torch, contains no CFC gases
InChI=1/C4H10/c1-3-4-2/h3-4H2,1-2H
06005800-A997-4214-BF1C-5063E9E46167
Microorganism:

Yes

IUPAC namebutane
SMILESCCCC
InchiInChI=1S/C4H10/c1-3-4-2/h3-4H2,1-2H3
FormulaC4H10
PubChem ID7843
Molweight58.12
LogP2.9
Atoms4
Bonds1
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID37808
Supernatural-IDSN0147041

mVOC Specific Details

Boiling Point
DegreeReference
0.5 °C peer reviewed
Volatilization
The Henry's Law constant for n-butane is estimated as 0.95 atm-cu m/mole(SRC) based upon its vapor pressure, 1820 mm Hg(1), and water solubility, 61.2 mg/l(2). This Henry's Law constant indicates that n-butane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 50 minutes(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 3.0 days(SRC). n-Butane's Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Butane is expected to volatilize from dry soil surfaces(SRC) based upon its vapor pressure(1).
Literature: (1) Riddick JA et al; Organic Solvents: Physical Properties and Methods of Purification, Techniques of Chemistry 4th ed., New York, NY: Wiley-Interscience Vol 2, p. 78-80 (1986) (2) McAuliffe C; Nature, 200: 1092-3 (1963) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods New York, NY: McGraw-Hill p. 15-15 to 15-29 (1982)
Soil Adsorption
The Koc of n-butane is estimated as 900(SRC), using a measured log Kow of 2.89(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that n-butane is expected to have low mobility in soil.
Literature: (1) Hansch C et al; Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Prof Ref Book. Heller SR, consult. ed., Washington, DC: Amer Chem Soc p. 10 (1995) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Nov 20, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
1820 mm Hg at 25 deg CRiddick, J.A., W.B. Bunger, Sakano T.K. Techniques of Chemistry 4th ed., Volume II. Organic Solvents. New York, NY: John Wiley and Sons., 1985., p. 78
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas AeruginosaNANAFilipiak et al. 2012
ProkaryotaStreptococcus PneumoniaeNANAFilipiak et al. 2012
ProkaryotaPseudomonas AeruginosaNational Collections of Industrial Food and Marine Bacteria, American Type Culture CollectionSlade et al. 2022
ProkaryotaRalstonia SolanacearumnanaSpraker et al. 2014
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas Aeruginosatryptic soy brothTD/GC-MSno
ProkaryotaStreptococcus PneumoniaeTryptic soyaTD/GC-MSno
ProkaryotaPseudomonas AeruginosaTS agar/blood agarHS-SPME/GC-MSno
ProkaryotaRalstonia SolanacearumCasamino Acid Peptone Glucose agarSPME-GC/MSno


2-methylpropane

Compound Details

Synonymous names
ISOBUTANE
2-Methylpropane
75-28-5
Trimethylmethane
Propane, 2-methyl-
1,1-Dimethylethane
iso-butane
R 600a
Caswell No. 503A
HSDB 608
R-600a
EINECS 200-857-2
Isobutane [NF]
UNII-BXR49TP611
EPA Pesticide Chemical Code 097101
BXR49TP611
CHEBI:30363
E943b
(CH3)2CH-CH3
DTXSID1026401
EC 200-857-2
Isobutane (NF)
ISOBUTANE (II)
ISOBUTANE [II]
ISOBUTANE (MART.)
ISOBUTANE [MART.]
2-METHYL-D3-PROPANE-1,1,1,3,3,3-D6
dimethylethane
Methylpropane
iso butane
tert-Butane
2-methylpropyl
i-Butane
H-tBu
ISOBUTANE [FCC]
iso-C4H10
2-Methylpropane, 99%
ISOBUTANE [HSDB]
ISOBUTANE [INCI]
ISOBUTANE [VANDF]
2-Methylpropane, puriss.
PROPANE, 2-METHYL
ISOBUTANE [WHO-DD]
DTXCID806401
2-Methylpropane, 99.995%
CHEMBL2106398
DTXSID20166894
DTXSID60963546
MFCD00008926
AKOS015917447
UN 1969
DB-360584
I0090
NS00007329
D04623
Q407225
Microorganism:

Yes

IUPAC name2-methylpropane
SMILESCC(C)C
InchiInChI=1S/C4H10/c1-4(2)3/h4H,1-3H3
FormulaC4H10
PubChem ID6360
Molweight58.12
LogP2.1
Atoms4
Bonds0
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID30363
Supernatural-IDSN0250421

mVOC Specific Details

Boiling Point
DegreeReference
11.7 °C peer reviewed
Volatilization
The Henry's Law constant for isobutane is estimated as 1.19 atm-cu m/mole(SRC) derived from its vapor pressure, 2610 mm Hg(1), and water solubility, 48.8 mg/L(2). This Henry's Law constant indicates that isobutane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 47 minutes(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 3 days(SRC). Isobutane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of isobutane from dry soil surfaces may exist(SRC) based upon its vapor pressure(1).
Soil Adsorption
The Koc of isobutane is estimated as 250(SRC), using a log Kow of 2.76(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that isobutane is expected to have moderate mobility in soil.
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaStreptococcus PneumoniaeNANAFilipiak et al. 2012
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaStreptococcus PneumoniaeTryptic soyaTD/GC-MSno


Tetradecane

Mass-Spectra

Compound Details

Synonymous names
Tetradecane
629-59-4
N-TETRADECANE
Tetradecane, N-
CCRIS 715
Tetradekan
HSDB 5728
EINECS 211-096-0
NSC 72440
BRN 1733859
DTXSID1027267
UNII-03LY784Y58
CHEBI:41253
AI3-04240
MFCD00008986
NSC-72440
03LY784Y58
DTXCID707267
90622-46-1
EC 211-096-0
4-01-00-00520 (Beilstein Handbook Reference)
74664-93-0
Tridecane, methyl-
Tetradecane, analytical standard
CH3-(CH2)12-CH3
CH3-[CH2]12-CH3
Tetradecane olefine
EINECS 292-448-0
Tetradecane, 99%
n-Tetradecane 10 microg/mL in Hexane
Tetradecane, >=99%
TETRADECANE [INCI]
N-TETRADECANE [HSDB]
Tetradecane_GurudeebanSatyavani
CHEMBL135488
DTXSID101022622
NSC72440
Tox21_303277
LMFA11000586
STL280540
AKOS004910010
HY-W094846
MCULE-7442374993
NCGC00257151-01
AS-56340
CAS-629-59-4
SY010359
DB-054348
CS-0146758
NS00010784
T0079
Tetradecane, olefine free, >=99.0% (GC)
G68413
Q150808
C72FCDE9-545A-4C7D-9907-1DFACCF43A82
Tetradecane, certified reference material, TraceCERT(R)
Microorganism:

Yes

IUPAC nametetradecane
SMILESCCCCCCCCCCCCCC
InchiInChI=1S/C14H30/c1-3-5-7-9-11-13-14-12-10-8-6-4-2/h3-14H2,1-2H3
FormulaC14H30
PubChem ID12389
Molweight198.39
LogP7.2
Atoms14
Bonds11
H-bond Acceptor0
H-bond Donor0
Chemical Classificationsaturated hydrocarbons alkanes
CHEBI-ID41253
Supernatural-IDSN0024723

mVOC Specific Details

Boiling Point
DegreeReference
253.57 °C peer reviewed
Volatilization
The Henry's Law constant for n-tetradecane is estimated as 11.9 atm-cu m/mole(SRC) derived from its vapor pressure, 0.015 mm Hg(1), and water solubility, 0.00033 mg/L(2). This Henry's Law constant indicates that n-tetradecane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 4 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 5.6 days(SRC). However, volatilization from water surfaces is expected to be attenuated by adsorption to suspended solids and sediment in the water column. The estimated volatilization half-life from a model pond is 28 months if adsorption is considered(4). n-Tetradecane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). n-Tetradecane is not expected to volatilize from dry soil surfaces based upon its vapor pressure(SRC).
Literature: (1) Haynes WM, ed; CRC Handbook of Chemistry and Physics. 95th ed. Boca Raton, FL: CRC Press LLC, p. 15-21 (2014) (2) Coates M et al; Environ Sci Technol 19: 628-32 (1985) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987)
Solubility
In water, 3.3X10-4 mg/L at 25 deg C
Literature: Coates M et al; Environ Sci Technol 19: 628-32 (1985)
Literature: #Very soluble in ether; soluble in carbon tetrachloride
Literature: Haynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 3-498
Literature: #Soluble in alcohol
Literature: Lewis, R.J. Sr.; Hawley's Condensed Chemical Dictionary 15th Edition. John Wiley & Sons, Inc. New York, NY 2007., p. 1218
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of n-tetradecane can be estimated to be 16,000(SRC). According to a classification scheme(2), this estimated Koc value suggests that n-tetradecane is expected to be immobile in soil. Laboratory soil column elution experiments showed that the percent of n-tetradecane adsorbed to three different native soil types ranged from 2.2-5.98%(3).
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Nov 11, 2015: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 23 (1983) (3) Kanatharana P, Grob RL; J Environ Sci Health A18: 59-77 (1983)
Vapor Pressure
PressureReference
0.015 mm Hg at 25 deg CHaynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, Boca Raton: FL 2014-2015, p. 15-21
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaAcinetobacter BaumanniiNANAGao et al. 2016
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaPseudomonas AeruginosaNANANeerincx et al. 2016
EukaryotaPythium OligandrumN/APythium oligandrum GAQ1 strain was isolated from soil from a field where infected ginger was growing in Laiwu district, Jinan City, Shandong Province, China. China General Microbiological Culture Collection Center (CGMCC) deposit number No. 17470.Sheikh et al. 2023
ProkaryotaPseudomonas MonteiliiPlant growth promotionrhizosphereJishma et al. 2017
ProkaryotaPseudomonas RhodesiaePlant growth promotion and ISRrhizosphereJishma et al. 2017
ProkaryotaEscherichia ColiNAKarami et al. 2017
ProkaryotaPseudomonas Sp.antifungal activity against Thielaviopsis ethacetica mycelial growthBrazilian Biorenewables National Laboratory – LNBR/CNPEM Microorganism Collection, Campinas, SP; isolatedfrom soil and roots of highly productive sugarcane-producing regions; BrazilFreitas et al. 2022
ProkaryotaEscherichia ColiLeibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHFitzgerald et al. 2020
ProkaryotaPaenibacillus Polymyxaantifungal effects against Rhizopus stoloniferisolated from an ancient tree Cryptomeria fortune and deposited in China General Microbiological Culture Collection Center (CGMCC No. 15733)Wu et al. 2020
ProkaryotaErwinia Amylovoraenhances Arabidopsis thaliana shoot and root growthbacterial collection of the LabParmagnani et al. 2023
EukaryotaFusarium Graminearumn/aNABusko et al. 2014
ProkaryotaPseudomonas Fluorescensn/aNAFernando et al. 2005
ProkaryotaPseudomonas Corrugatan/aNAFernando et al. 2005
ProkaryotaPseudomonas Chlororaphisn/aNAFernando et al. 2005
ProkaryotaPseudomonas Aurantiacan/aNAFernando et al. 2005
ProkaryotaBacillus Simplexn/aNAGu et al. 2007
ProkaryotaBacillus Subtilisn/aNAGu et al. 2007
ProkaryotaBacillus Weihenstephanensisn/aNAGu et al. 2007
ProkaryotaMicrobacterium Oxydansn/aNAGu et al. 2007
ProkaryotaStenotrophomonas Maltophilian/aNAGu et al. 2007
ProkaryotaStreptomyces Lateritiusn/aNAGu et al. 2007
ProkaryotaSerratia Marcescensn/aNAGu et al. 2007
EukaryotaTuber Borchiin/aFortywoodland of the Basilicata regionMauriello et al. 2004
ProkaryotaPseudomonas Simiaenarhizosphere of a soybean field in the province of Rajasthan, IndiaVaishnav et al. 2016
ProkaryotaPseudomonas Putidanablack pepper rootSheoran et al. 2015
EukaryotaTuber MelanosporumNoneT. melanosporum, T. borchii were collected from northern Italy (Piedmont) and T. indicum from Yunnan and Sichuan Provinces (China). Splivallo et al. 2007b
ProkaryotaSerratia Sp.NANAEtminani et al. 2022
ProkaryotaEnterobacter Sp.NANAEtminani et al. 2022
ProkaryotaPantoea Sp.NANAEtminani et al. 2022
ProkaryotaPseudomonas Sp.NANAEtminani et al. 2022
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
EukaryotaSaccharomyces CerevisiaeNANAHarris et al. 2021
EukaryotaSaccharomyces EubayanusNANAMardones et al. 2022
Saccharomyces CerevisiaeJi et al. 2024
Lactobacillus PlantarumMa et al. 2023
Citrobacter FreundiiTallon et al. 2023
Enterobacter AgglomeransTallon et al. 2023
Enterobacter CloacaeTallon et al. 2023
Klebsiella OxytocaTallon et al. 2023
Staphylococcus AureusWang et al. 2023
Pediococcus AcidilacticiMockus et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaAcinetobacter BaumanniiBacT/ALERT SASPME/GC-MSno
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaPseudomonas AeruginosaBrain Heart InfusionTD/GC-MSno
EukaryotaPythium OligandrumV8 juice agarSPME/GC-MS/MSno
ProkaryotaPseudomonas MonteiliiMR-VP brothGS-MSno
ProkaryotaPseudomonas RhodesiaeNBGS-MSno
ProkaryotaEscherichia ColiMueller Hinton broth (MB), tryptic soy broth (TSB)SPME, DVB/CAR/PDMS, GC-MSno
ProkaryotaPseudomonas Sp.LB mediaHS-SPME/GC-MSno
ProkaryotaEscherichia ColiTSB mediaHS-SPME/GC-MSno
ProkaryotaPaenibacillus PolymyxaLB agar and M49 (minimal) mediaSPME/GC-MSno
ProkaryotaErwinia AmylovoraSBSE/GC-MSno
EukaryotaFusarium Graminearumyeast extract sucrose agarSPME/GC-MSno
ProkaryotaPseudomonas Fluorescensn/an/ano
ProkaryotaPseudomonas Corrugatan/an/ano
ProkaryotaPseudomonas Chlororaphisn/an/ano
ProkaryotaPseudomonas Aurantiacan/an/ano
ProkaryotaBacillus Simplexn/an/ano
ProkaryotaBacillus Subtilisn/an/ano
ProkaryotaBacillus Weihenstephanensisn/an/ano
ProkaryotaMicrobacterium Oxydansn/an/ano
ProkaryotaStenotrophomonas Maltophilian/an/ano
ProkaryotaStreptomyces Lateritiusn/an/ano
ProkaryotaSerratia Marcescensn/an/ano
EukaryotaTuber Borchiin/amicroextraction-gas chromatography-mass spectrometry analysis (SPME-GC-MS)no
ProkaryotaPseudomonas SimiaeNutrient broth; King's B agarGC/MSno
ProkaryotaPseudomonas PutidaLuria Bertani AgarSolvent extraction with hexane, GC/MSno
EukaryotaTuber MelanosporumNoneNoneyes
ProkaryotaSerratia Sp.nutrient agar (NA)GC–MSno
ProkaryotaEnterobacter Sp.nutrient agar (NA)GC–MSno
ProkaryotaPantoea Sp.nutrient agar (NA)GC–MSno
ProkaryotaPseudomonas Sp.nutrient agar (NA)GC–MSno
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
EukaryotaSaccharomyces Cerevisiaemalt extract brothHS-SPME with GC-MSno
EukaryotaSaccharomyces EubayanusYPD agar media (yeast extract 1%, peptone 2%, glucose 2% and agar 2%)HS‐SPME‐GC‐MSno
Saccharomyces CerevisiaeSauce Meat during StorageSPME–GC–MSno
Lactobacillus Plantarumtuna cooking liquidHS-SPME-GC/MSno
Citrobacter Freundiitryptone soya broth (TSB) mediaTenax/GC/MSno
Enterobacter Agglomeranstryptone soya broth (TSB) mediaTenax/GC/MSno
Enterobacter Cloacaetryptone soya broth (TSB) mediaTenax/GC/MSno
Klebsiella Oxytocatryptone soya broth (TSB) mediaTenax/GC/MSno
Staphylococcus Aureusraw Shiyang chickenHS-GC-IMS/HS-SPME-GC-MSno
Pediococcus Acidilacticilentils (Lens culinaris)SPME/ICP-MSno