Results for:
chemical Classification: aliphatic ketones

Dodecan-2-one

Mass-Spectra

Compound Details

Synonymous names
2-Dodecanone
Dodecan-2-one
6175-49-1
Decyl methyl ketone
METHYL DECYL KETONE
Dodecanone-(2)
MFCD00015064
P5CN8YSV3P
CHEBI:89284
EINECS 228-222-5
UNII-P5CN8YSV3P
n-DECYL METHYL KETONE
AI3-28136
2-Dodecanone, 95%
SCHEMBL103221
CHEMBL2228472
DTXSID4022236
2-Dodecanone, >=97.0% (GC)
LMFA12000163
AKOS009158766
MCULE-3936750617
NCGC00166062-01
AS-14475
2-Dodecanone, analytical reference material
CS-0314654
D1862
NS00022516
D89937
A833406
Q27161470
Microorganism:

Yes

IUPAC namedodecan-2-one
SMILESCCCCCCCCCCC(=O)C
InchiInChI=1S/C12H24O/c1-3-4-5-6-7-8-9-10-11-12(2)13/h3-11H2,1-2H3
FormulaC12H24O
PubChem ID22556
Molweight184.32
LogP4.6
Atoms13
Bonds9
H-bond Acceptor1
H-bond Donor0
Chemical Classificationaliphatic ketones ketones
CHEBI-ID89284
Supernatural-IDSN0214124

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaEscherichia ColiNANAFitzgerald et al. 2021
ProkaryotaEscherichia ColiNANAHewett et al. 2020
ProkaryotaPseudomonas AeruginosaNANABean et al. 2012
ProkaryotaPseudomonas AeruginosaNANADavis et al. 2020
ProkaryotaBacillus Sp.antifungal activity against Fusarium solaniRhizosphere soil of avocadoGuevara-Avendaño et al. 2019
ProkaryotaBacillus AmyloliquefaciensInhibition of fusarium oxysporum f.sp. Niveumrhizosphere soils of watermelon plantsWu et al. 2019
ProkaryotaPseudomonas Sp.antifungal activity against Thielaviopsis ethacetica mycelial growthBrazilian Biorenewables National Laboratory – LNBR/CNPEM Microorganism Collection, Campinas, SP; isolatedfrom soil and roots of highly productive sugarcane-producing regions; BrazilFreitas et al. 2022
ProkaryotaStaphylococcus EpidermidisAmerican Type Culture CollectionJenkins and Bean 2020
ProkaryotaBurkholderia AmbifariaNAGroenhagen et al. 2013
ProkaryotaSerratia Plymuthican/aNAWeise et al. 2014
ProkaryotaSerratia Proteamaculansn/aNAWeise et al. 2014
ProkaryotaSerratia Marcescensn/aNAWeise et al. 2014
ProkaryotaSerratia Sp.n/aNABruce et al. 2004
ProkaryotaSerratia Sp.n/aNASchulz and Dickschat 2007
ProkaryotaCytophaga-Flavobacterium-Bacteroides (CFB)n/aNASchulz and Dickschat 2007
ProkaryotaCytophaga-Flavobacterium-Bacteroidesn/aNADickschat et al. 2005_3
ProkaryotaXanthomonas Campestrisn/aNAWeise et al. 2012
ProkaryotaAchromobacter Sp.NANAAlmeida et al. 2022
ProkaryotaEnterobacter Sp.NANAAlmeida et al. 2022
ProkaryotaBacillus VelezensisNANAToral et al. 2021
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiTSBSPME/GC-MSno
ProkaryotaEscherichia ColiLBSPME/GC-MSno
ProkaryotaPseudomonas Aeruginosalysogeny brothSPME/GCxGC-MSno
ProkaryotaPseudomonas AeruginosaLB brothSPME/GCxGC-MSno
ProkaryotaBacillus Sp.LB agarSPME-GC-MSno
ProkaryotaBacillus Amyloliquefaciensmodified Murashige-Skoog (MS) culture mediumSPME-GC-MSno
ProkaryotaPseudomonas Sp.LB media, DYGS mediaHS-SPME/GC-MSno
ProkaryotaPseudomonas Sp.LB mediaHS-SPME/GC-MSno
ProkaryotaStaphylococcus EpidermidisBHI media, MHB mediaHS-SPME/GC×GC-TOFMSno
ProkaryotaBurkholderia AmbifariaLuria-Bertani medium, Malt Extractyes
ProkaryotaSerratia PlymuthicaNBIIHeadspace trapping/ GC-MSno
ProkaryotaSerratia ProteamaculansNBIIHeadspace trapping/ GC-MSno
ProkaryotaSerratia MarcescensNBIIHeadspace trapping/ GC-MSno
ProkaryotaSerratia Sp.n/an/ano
ProkaryotaCytophaga-Flavobacterium-Bacteroides (CFB)n/an/ano
ProkaryotaCytophaga-Flavobacterium-Bacteroidesn/an/ano
ProkaryotaXanthomonas CampestrisNBIIClosed airflow-system/GC-MS and PTR-MSno
ProkaryotaAchromobacter Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
ProkaryotaEnterobacter Sp.LB broth supplemented with cryoprotectant solution (25 g L−1 gelatin, 50 g L−1 lactose, 10 g L−1 peptone, and 250 g L−1 glycerol)SPME with gas chromatograph (Agilent 7890A, Agilent Technologies) connected to a mass spectrometer (Pegasus® HT TOFMS, LECO Corporation)no
ProkaryotaBacillus Velezensistryptic soy agar (TSA, Panreac Applichem) mediumHS-SPME-GC/MSno


Heptadecan-2-one

Mass-Spectra

Compound Details

Synonymous names
Heptadecan-2-one
2-HEPTADECANONE
2922-51-2
2-Heptodecanone
Methyl pentadecyl ketone
PACOCH3
2-heptadeconone
01M5W012RI
Pentadecyl Methyl Ketone
UNII-01M5W012RI
SCHEMBL161232
SCHEMBL2803236
CHEMBL3273575
DTXSID6075061
Heptadeca-2-one 2-Heptadecanone
CHEBI:188010
LMFA12000046
MFCD00026615
2-Heptadecanone, >=99.0% (GC)
AKOS016009823
MCULE-2820432182
NS00125522
F87271
J-017444
Q27231437
Microorganism:

Yes

IUPAC nameheptadecan-2-one
SMILESCCCCCCCCCCCCCCCC(=O)C
InchiInChI=1S/C17H34O/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17(2)18/h3-16H2,1-2H3
FormulaC17H34O
PubChem ID18027
Molweight254.5
LogP7.3
Atoms18
Bonds14
H-bond Acceptor1
H-bond Donor0
Chemical Classificationaliphatic ketones ketones
CHEBI-ID188010
Supernatural-IDSN0361297

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaEscherichia ColiNANADixon et al. 2022
ProkaryotaCorynebacterium Accolensclinical isolateLemfack et al. 2016
ProkaryotaCorynebacterium Jeikeiumclinical isolateLemfack et al. 2016
ProkaryotaSerratia Fonticolastimulate growth of Solanum tuberosumisolate from Irish potato soilsHeenan-Daly et al. 2021
ProkaryotaPseudomonas Syringaenaphyllosphere of field-grown potato plantsHunziker et al. 2015
EukaryotaPichia KudriavzeviiNANAMozūraitis et al. 2022
ProkaryotaBacillus SubtilisNANALee et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiLBTD/GC-MSno
ProkaryotaCorynebacterium Accolensbrain heart infusion mediumPorapak / GC/MSno
ProkaryotaCorynebacterium Jeikeiumbrain heart infusion mediumPorapak / GC/MSno
ProkaryotaSerratia FonticolaTSB media, MR-VP (Methyl Red-Vogos Proskeur) media, M+S (Murashige and Skoog) mediaSPME/GC-MSno
ProkaryotaPseudomonas SyringaeLB mediumGC/MSyes
EukaryotaPichia KudriavzeviiYPD-agar plates (1% yeast extract, 1% peptone, 2% dextrose, 2% agar)SPME-GC-MSno
ProkaryotaBacillus SubtilisTryptone soy broth (TSB)HPLCno


Cyclopent-2-en-1-one

Compound Details

Synonymous names
2-CYCLOPENTEN-1-ONE
930-30-3
2-Cyclopentenone
cyclopent-2-en-1-one
Cyclopent-2-enone
Cyclopentenone
Cyclopenten-3-one
2-Cyclopentene-1-one
28982-58-3
3-Cyclopenten-2-one
Q0U2IGF9CK
MFCD00001401
NSC-73117
cyclopent-2-ene-1-one
Cyclopenten-2-one
UNII-Q0U2IGF9CK
Cyclopenten-3-one (VAN)
cis-cyclopentenone
EINECS 213-213-0
2-Cyclopentenone-1
NSC 73117
2-cylcopenten-1-one
2-cyclopenten-1- one
1-CYCLOPENTEN-3-ONE
1-CYCLOPENTEN-5-ONE
CHEMBL52190
2-Cyclopenten-1-one, 98%
DTXSID60870802
CHEBI:141550
NSC73117
BBL100014
STL183308
AKOS000121108
AKOS025243944
AM61702
CS-W011359
HY-W010643
MCULE-1844779047
PS-9373
SB40642
DB-031967
NS00041822
EN300-24545
A844427
J-520173
Q2292678
F0001-2242
InChI=1/C5H6O/c6-5-3-1-2-4-5/h1,3H,2,4H
Microorganism:

Yes

IUPAC namecyclopent-2-en-1-one
SMILESC1CC(=O)C=C1
InchiInChI=1S/C5H6O/c6-5-3-1-2-4-5/h1,3H,2,4H2
FormulaC5H6O
PubChem ID13588
Molweight82.1
LogP0.5
Atoms6
Bonds0
H-bond Acceptor1
H-bond Donor0
Chemical Classificationaliphatic ketones ketones
CHEBI-ID141550
Supernatural-IDSN0039614

Species emitting the compound
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaEscherichia ColiASMTD/GC-MSno
ProkaryotaPseudomonas AeruginosaASMTD/GC-MSno
ProkaryotaStaphylococcus AureusASMTD/GC-MSno
ProkaryotaEnterobacter CloacaeLevine EMB agar (LEA) (Fluka Analytical, UK)GC-MSno
ProkaryotaPseudomonas AeruginosaLevine EMB agar (LEA) (Fluka Analytical, UK)GC-MSno


Pentane-2,3-dione

Mass-Spectra

Compound Details

Synonymous names
2,3-PENTANEDIONE
pentane-2,3-dione
600-14-6
Acetylpropionyl
Acetyl propionyl
2,3-Pentadione
Acetylpropionyl (VAN)
FEMA No. 2841
2,3-pentane-dione
Pentan-2,3-dione
ethyl methyl diketone
K4WBE45SCM
CH3C(O)C(O)C2H5
CHEBI:52774
NSC-7613
MFCD00009313
Acetyl propionyl (natural)
2,3-pentandione
CCRIS 2946
NSC 7613
EINECS 209-984-8
UNII-K4WBE45SCM
BRN 1699638
2,3,-pentanedione
23-PENTANEDIONE
2,3-Pentanedione, 97%
4-01-00-03660 (Beilstein Handbook Reference)
Acetylpropionyl; NSC 7613
SCHEMBL106990
CHEMBL192809
DTXSID6051435
BDBM22765
FEMA 2841
HSDB 8326
2,3-PENTANEDIONE [FCC]
AMY4046
NSC7613
2,3-PENTANEDIONE [FHFI]
2,3-Pentanedione, analytical standard
AKOS009156847
CS-W013714
HY-W012998
MCULE-3065014067
2,3-Pentanedione, >=96%, FCC, FG
PD164983
2,3-Pentanedione, natural, >=96%, FG
DB-003231
NS00013104
P0051
EN300-39756
Q-100694
Q19903182
InChI=1/C5H8O2/c1-3-5(7)4(2)6/h3H2,1-2H
Microorganism:

Yes

IUPAC namepentane-2,3-dione
SMILESCCC(=O)C(=O)C
InchiInChI=1S/C5H8O2/c1-3-5(7)4(2)6/h3H2,1-2H3
FormulaC5H8O2
PubChem ID11747
Molweight100.12
LogP0.1
Atoms7
Bonds2
H-bond Acceptor2
H-bond Donor0
Chemical Classificationaliphatic ketones ketones
CHEBI-ID52774
Supernatural-IDSN0364313

mVOC Specific Details

Boiling Point
DegreeReference
109.9 °C peer reviewed
Volatilization
The Henry's Law constant for 2,3-pentanedione is estimated as 3.95X10-5 atm-cu m/mole(SRC) derived from its vapor pressure, 20 mm Hg(1), and water solubility, 6.67X10+4 mg/L(2). This Henry's Law constant indicates that 2,3-pentanedione is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 16 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 11 days(SRC). 2,3-Pentanedione's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of 2,3-pentanedione from dry soil surfaces may exist based upon its vapor pressure(1).
Literature: (1) US Occupational Safety & Health Administration; Chemical Sampling Information. 2,3-Pentanedione. Available from, as of June 9, 2016 https://www.osha.gov/dts/chemicalsampling/data/CH_260240.html (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of June 9, 2016: http://www2.epa.gov/tsca-screening-tools (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
Using a structure estimation method based on molecular connectivity indices(1), the Koc of 2,3-pentanedione can be estimated to be 1(SRC). According to a classification scheme(2), this estimated Koc value suggests that 2,3-pentanedione is expected to have very high mobility in soil.
Literature: (1) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of June 9, 2016: http://www2.epa.gov/tsca-screening-tools (2) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
2.67 kPa at 20 deg C /20.0 mm Hg at 20 deg C/US Occupational Safety & Health Administration; Chemical Sampling Information. 2,3-Pentanedione. Available from, as of June 9, 2016 https://www.osha.gov/dts/chemicalsampling/data/CH_260240.html
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas AeruginosaNANABean et al. 2016
ProkaryotaStreptococcus PneumoniaeNANAMellors et al. 2018
ProkaryotaStaphylococcus AureusNAKarami et al. 2017
EukaryotaCandida AlbicansATCC MYA-2876, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida GlabrataATCC 90030, American Type Culture CollectionCosta et al. 2020
EukaryotaCandida TropicalisATCC 750, American Type Culture CollectionCosta et al. 2020
EukaryotaTuber Magnatumcollected from natural truffle orchards in Istria (Croatia) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Baranya (Hungary) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Somogy (Hungary) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Abruzzo (Italy) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Kalubara (Serbia) during one truffle season (October 2018–January 2019)Niimi et al. 2021
EukaryotaTuber Magnatumcollected from natural truffle orchards in Srem (Serbia) during one truffle season (October 2018–January 2019)Niimi et al. 2021
ProkaryotaLactobacillus RhamnosusnaDomiati cheesePogačić et al. 2016
ProkaryotaStaphylococcus Sp.n/aNASchulz and Dickschat 2007
ProkaryotaCyanobacteria Sp.n/aNASchulz and Dickschat 2007
ProkaryotaLentilactobacillus BuchneriNANASquara et al. 2022
ProkaryotaLacticaseibacillus ParacaseiNANASquara et al. 2022
Saccharomyces CerevisiaeQin et al. 2024
Bacillus ToyonensisKoilybayeva et al. 2023
Staphylococcus AureusWang et al. 2023
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas AeruginosaLB-LennoxSPME/GC-MSno
ProkaryotaStreptococcus PneumoniaeModified Lacks MediaSPME/GCxGC-MSno
ProkaryotaStaphylococcus AureusMueller Hinton broth (MB), tryptic soy broth (TSB)SPME, DVB/CAR/PDMS, GC-MSno
EukaryotaCandida AlbicansYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida GlabrataYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaCandida TropicalisYGC mediaHS-SPME/GC-GC-ToFMSno
EukaryotaTuber MagnatumGC-MS-Ono
ProkaryotaLactobacillus Rhamnosuscurd-based broth mediumGC/MSyes
ProkaryotaStaphylococcus Sp.n/an/ano
ProkaryotaCyanobacteria Sp.n/an/ano
ProkaryotaLentilactobacillus Buchnerimaize silageHS-SPME coupled with GC-TOF MSno
ProkaryotaLacticaseibacillus Paracaseimaize silageHS-SPME coupled with GC-TOF MSno
Saccharomyces Cerevisiaefermentation of mulberry wineHS-SPME-GC-MSno
Bacillus Toyonensisbacteriological agar (BA, 15 g/L), gelatin peptone (GP, 5 g/L), and meat extract (ME, 3 g/L)GC–MSno
Staphylococcus Aureusraw Shiyang chickenHS-GC-IMS/HS-SPME-GC-MSno


4-methylpent-3-en-2-one

Mass-Spectra

Compound Details

Synonymous names
MESITYL OXIDE
141-79-7
4-Methylpent-3-en-2-one
4-Methyl-3-penten-2-one
3-Penten-2-one, 4-methyl-
Methyl isobutenyl ketone
Isopropylideneacetone
Isobutenyl methyl ketone
Mesityloxid
Mesityloxyde
Ossido di mesitile
3-Isohexen-2-one
Isopropylidene acetone
Oxyde de mesityle
Acetone, isopropylidene-
Methyl 2-methyl-1-propenyl ketone
Methyl 2,2-dimethylvinyl ketone
2-Methyl-4-oxo-2-pentene
2-Methyl-2-pentenone-4
2,2-Dimethylvinyl methyl ketone
4-Metil-3-penten-2-one
4-Methyl-3-pentene-2-one
4-Methyl-3-penten-2-on
2-Methyl-2-penten-4-one
FEMA No. 3368
NSC 38717
4-Methyl-3-penten-2-one, 9CI
4-methyl-pent-3-en-2-one
DTXSID1029170
CHEBI:89993
(CH3)2C=CHC(=O)CH3
NSC-38717
77LAC84669
DTXCID209170
Mesityloxid [German]
Mesityloxyde [Dutch]
Caswell No. 547
FEMA Number 3368
Oxyde de mesityle [French]
CAS-141-79-7
Ossido di mesitile [Italian]
HSDB 1195
EINECS 205-502-5
4-Metil-3-penten-2-one [Italian]
UN1229
EPA Pesticide Chemical Code 052401
BRN 1361550
4-Methyl-3-penten-2-on [Dutch, German]
AI3-07702
UNII-77LAC84669
Mesityloxid(german)
MFCD00008900
Isopropylidene-Acetone
Mesityl oxide [UN1229] [Flammable liquid]
EC 205-502-5
2-methylpent-2-en-4-one
MESITYL OXIDE [MI]
1-Methylpent-2-en-4-one
MESITYL OXIDE [HSDB]
CHEMBL3185916
FEMA 3368
WLN: 1Y1 & U1V1
4-Methyl-3-penten-2-one, 90%
AMY23356
NSC38717
Tox21_202080
Tox21_303606
LMFA12000030
STL146350
Mesityl oxide, technical grade, 90%
AKOS000118892
MCULE-4922478422
UN 1229
NCGC00249161-01
NCGC00257514-01
NCGC00259629-01
4-Methyl-3-penten-2-one (mesityl oxide)
4-Methyl-3-penten-2-on(DUTCH, GERMAN)
4-METHYL-3-PENTENE-2-ONE [FHFI]
M0069
M1340
NS00006985
TEICOPLANIN IMPURITY A [EP IMPURITY]
3-PENTEN,2-ONE,4-METHYL MESITYLOXIDE
EN300-21333
Mesityl oxide [UN1229] [Flammable liquid]
3-PENTEN,2-ONE,4-METHYL MESITYLOXIDE
A807813
CILASTATIN SODIUM IMPURITY D [EP IMPURITY]
Q425668
Q-201356
4-Methyl-3-penten-2-one, analytical reference material
Mesityl oxide, 90%, remainder 4-methyl-4-penten-2-one
InChI=1/C6H10O/c1-5(2)4-6(3)7/h4H,1-3H
Mesityl oxide, European Pharmacopoeia (EP) Reference Standard
4-Methylpent-3-en-2-one; Mesityl oxide; Cilastatin Sodium Imp. D (EP)
Mesityl Oxide, Pharmaceutical Secondary Standard; Certified Reference Material
Mesityl oxide, suitable for neutral marker for measuring electroosmotic flow (EOF), ~98%
Microorganism:

Yes

IUPAC name4-methylpent-3-en-2-one
SMILESCC(=CC(=O)C)C
InchiInChI=1S/C6H10O/c1-5(2)4-6(3)7/h4H,1-3H3
FormulaC6H10O
PubChem ID8858
Molweight98.14
LogP1.4
Atoms7
Bonds1
H-bond Acceptor1
H-bond Donor0
Chemical Classificationalkenes aliphatic ketones ketones
CHEBI-ID89993
Supernatural-IDSN0345746

mVOC Specific Details

Boiling Point
DegreeReference
130 °C peer reviewed
Volatilization
The Henry's Law constant for mesityl oxide is estimated as 3.67X10-5 atm-cu m/mole(SRC) derived from its vapor pressure, 8.21 mm Hg(1), and water solubility, 28,900 mg/L(2). This Henry's Law constant indicates that mesityl oxide is expected to volatilize from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 17 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 11 days(SRC). Mesityl oxide's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The potential for volatilization of mesityl oxide from dry soil surfaces may exist(SRC) based upon its vapor pressure(1).
Literature: (1) Daubert TE, Danner DP; Physical & Thermodynamic Properties of Pure Chemicals Vol. 3 NY: Hemisphere Pub Corp (1989) (2) Yalkowsky SH, He Y; Handbook of Aqueous Solubility Data. CRC Press LLC, Boca Raton, FL. p. 285 (2003) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990)
Soil Adsorption
The Koc of mesityl oxide is estimated as 15(SRC), using a water solubility of 28,900 mg/L(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that mesityl oxide is expected to have very high mobility in soil.
Literature: (1) Yalkowsky SH, He Y; Handbook of Aqueous Solubility Data. CRC Press LLC, Boca Raton, FL. p. 285 (2003) (2) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 4-5 (1990) (3) Swann RL et al; Res Rev 85: 17-28 (1983)
Vapor Pressure
PressureReference
8.21 mm Hg at 25 deg CDaubert, T.E., R.P. Danner. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Washington, D.C.: Taylor and Francis, 1989.
MS-Links
1D-NMR-Links
Massbank-Links

Species emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
ProkaryotaPseudomonas AeruginosaNANADavis et al. 2020
ProkaryotaKlebsiella PneumoniaeNARees et al. 2017
ProkaryotaPseudomonas Aeruginosastimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaPseudomonas Sp.stimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaBacillus Sp.stimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaBrevibacillus Agristimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaAneurinibacillus Aneurinilyticusstimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaSerratia Liquefaciensstimulate growth in Arabidopsis thaliana seedlings depending on inoculum concentrationavocado trees (Persea americana) rhizosphereGamboa-Becerra et al. 2022
ProkaryotaStaphylococcus AureusLeibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHFitzgerald et al. 2020
ProkaryotaPseudomonas AeruginosaLeibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHFitzgerald et al. 2020
ProkaryotaEscherichia ColiLeibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHFitzgerald et al. 2020
ProkaryotaStaphylococcus Epidermidisstrains were provided by Prof. O'Gara at NUI GalwayFitzgerald et al. 2020
ProkaryotaCollimonas Pratensisnarhizosphere of Marram grass in sandy dune soils, NetherlandsGarbeva et al. 2014
ProkaryotaCollimonas Pratensisn/aNAGarbeva et al. 2014
ProkaryotaStreptomyces Citreusn/aNASchulz and Dickschat 2007
Lentinula EdodesGeng et al. 2024
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
ProkaryotaPseudomonas AeruginosaLB brothSPME/GCxGC-MSno
ProkaryotaKlebsiella PneumoniaeLBSPME / GCxGC-TOFMSno
ProkaryotaPseudomonas AeruginosaLB mediaSPME/GC-MSno
ProkaryotaPseudomonas Sp.LB mediaSPME/GC-MSno
ProkaryotaBacillus Sp.LB mediaSPME/GC-MSno
ProkaryotaBrevibacillus AgriLB mediaSPME/GC-MSno
ProkaryotaAneurinibacillus AneurinilyticusLB mediaSPME/GC-MSno
ProkaryotaSerratia LiquefaciensLB mediaSPME/GC-MSno
ProkaryotaStaphylococcus AureusTSB mediaHS-SPME/GC-MSno
ProkaryotaPseudomonas AeruginosaTSB mediaHS-SPME/GC-MSno
ProkaryotaEscherichia ColiTSB mediaHS-SPME/GC-MSno
ProkaryotaStaphylococcus EpidermidisTSB mediaHS-SPME/GC-MSno
ProkaryotaCollimonas Pratensissand containing artificial root exudatesGC/MSno
ProkaryotaCollimonas PratensisHeadspace trapping/GC-MSno
ProkaryotaStreptomyces Citreusn/an/ano
Lentinula EdodesJiuqu (traditional wheat Qu)GC-IMSno