Results for:
PubChem ID: 356

Compound Details

Synonymous names
TVMXDCGIABBOFY-UHFFFAOYSA-N
octane
Oktanen
Ottani
Normal octane
octan
Oktan
octyl group
Octane, analytical standard
n-octane
n-Oktan
X1RV0B2FJV
AC1Q2VV5
Octane, all isomers
UNII-X1RV0B2FJV
Heptane, methyl-
KSC180A3D
Oktanen [Dutch]
Ottani [Italian]
n-OCTANE, REAG
NSC9822
octan-3-yl
Oktan [Polish]
c0044
CTK0I0031
HMDB01485
HSDB 108
O0022
O0118
O0151
S0280
WLN: 8H
AC1L1924
ACMC-2099aa
CHEMBL134886
n-C8H18
RP19167
bmse000480
C01387
LTBB002318
DTXSID0026882
LP019024
LP067606
LP068562
NSC 9822
NSC-9822
Octane, anhydrous, >=99%
CHEBI:17590
DSSTox_CID_6882
ZINC1529191
AN-43081
ANW-16304
DSSTox_GSID_26882
LS-97843
SC-78848
TRA0072181
DSSTox_RID_78237
LMFA11000002
MFCD00009556
AI3-28789
Octane, reagent grade, 98%
RTR-002289
TR-002289
AKOS015904009
J-002613
ZINC112927690
FT-0696530
I14-17863
I14-91421
Tox21_202452
111-65-9
F0001-0244
CH3-[CH2]6-CH3
MCULE-3248084959
NCGC00249228-01
NCGC00260001-01
CAS-111-65-9
EINECS 203-892-1
31372-91-5
50985-84-7
n-Octane, 98% 100ml
4067-EP1441224A2
4067-EP2269986A1
4067-EP2270113A1
4067-EP2272537A2
4067-EP2272935A1
4067-EP2274983A1
4067-EP2275398A1
4067-EP2277871A1
4067-EP2277878A1
4067-EP2280005A1
4067-EP2281821A1
4067-EP2284171A1
4067-EP2289509A2
4067-EP2289879A1
4067-EP2289884A1
4067-EP2289965A1
4067-EP2292576A2
4067-EP2292606A1
4067-EP2298775A1
4067-EP2298778A1
4067-EP2298828A1
4067-EP2301918A1
4067-EP2305642A2
4067-EP2305658A1
4067-EP2308873A1
4067-EP2311804A2
4067-EP2314558A1
4067-EP2371795A1
4067-EP2374780A1
4067-EP2374781A1
4067-EP2380568A1
4067-EP2380869A1
4067-EP2380870A1
MolPort-001-783-723
15416-EP2275407A1
15416-EP2275469A1
15416-EP2287940A1
15416-EP2289965A1
15416-EP2298828A1
15416-EP2301983A1
15416-EP2305683A1
15416-EP2305825A1
15416-EP2308926A1
15416-EP2309564A1
15416-EP2309584A1
15416-EP2311821A1
15416-EP2311839A1
15416-EP2314577A1
15416-EP2314589A1
15416-EP2316837A1
Octane, p.a., 99.0%
143914-EP2287165A2
143914-EP2287166A2
143914-EP2292592A1
143914-EP2292620A2
Octane, puriss. p.a., >=99.0% (GC)
Octane, electronic grade, >=99.999% metals basis, >=99% (CP)
EEE64B73-0375-4303-AFD5-0795361807FF
InChI=1/C8H18/c1-3-5-7-8-6-4-2/h3-8H2,1-2H
Microorganism:

Yes

IUPAC nameoctane
SMILESCCCCCCCC
InchiInChI=1S/C8H18/c1-3-5-7-8-6-4-2/h3-8H2,1-2H3
FormulaCH3-(CH2)6-CH3
PubChem ID356
Molweight114.232
LogP4.02
Atoms26
Bonds25
H-bond Acceptor0
H-bond Donor0
Chemical Classificationalkanes

mVOC Specific Details

Volatilization
The Henry's Law constant for n-octane is estimated as 3.2 atm-cu m/mole(SRC) derived from its vapor pressure, 14.1 mm Hg(1), and water solubility, 0.66 mg/L(2). This Henry's Law constant indicates that n-octane is expected to volatilize rapidly from water surfaces(3). Based on this Henry's Law constant, the volatilization half-life from a model river (1 m deep, flowing 1 m/sec, wind velocity of 3 m/sec)(3) is estimated as 3 hours(SRC). The volatilization half-life from a model lake (1 m deep, flowing 0.05 m/sec, wind velocity of 0.5 m/sec)(3) is estimated as 4.2 days(SRC). Volatilization from water surfaces may be attenuated by adsorption to suspended solids and sediment in the water column(SRC). The estimated volatilization half-life from a model pond is 11 months if adsorption is considered(4). However, in a study using a jet fuel mixture and sterile freshwater controls from the Escambia River (Florida), a 99% loss of n-octane was attributed to evaporation at 25 deg C(5). n-Octane's estimated Henry's Law constant indicates that volatilization from moist soil surfaces may occur(SRC). The disappearance of n-octane was rapid in soil/water mixture (concentration of soil, 25 g/150 mL)(6); an initial concentration of 0.177 ug/mL n-octane disappeared completely in 5 days using a sterile sandy loam soil with an organic matter content of 5.1%(6). The potential for volatilization of n-octane from dry soil surfaces may exist(SRC) based upon its vapor pressure(1).
Literature: (1) Yaws CL; Handbook of Vapor Pressure. Houston, TX: Gulf Pub Co. 3: 78 (1994) (2) Yalkowsky SH, He Y, eds; Handbook of aqueous solubility data. Boca Raton, FL: CRC Press p. 536 (2003) (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 15-1 to 15-29 (1990) (4) US EPA; EXAMS II Computer Simulation (1987) (5) Spain JC et al; Degrad of Jet Fuel Hydrocarbons by Aquatic Microbial Communities. Tyndall AFB, FL: Air Force Eng Serv Ctr. AFESC/ESL-TR-83-26 (NTIS AD-A139791/8) p 226 (1983) (6) Dean-Ross D; Bull Environ Contam Toxicol 51: 596-99 (1993)
Soil Adsorption
The Koc of n-octane is estimated as 3.1X10+4(SRC), using a log Kow of 5.18(1) and a regression-derived equation(2). According to a classification scheme(3), this estimated Koc value suggests that n-octane is expected to be immobile in soil. Freundlich absorption coefficients of log 4.04 and log 3.49 were measured in Oberlausitz lignite (11.1% moisture content; 53.5 wt% carbon content; 0.6 wt % nitrogen content) and Pahokee peat soil (10.2% moisture content; 46.1 wt% carbon content; 3.3 wt % nitrogen content), respectively(4). Gaseous transport of volatile n-octane in unsaturated porous media was shown to be influenced by air-water interfacial adsorption and water-partitioning(5). Sorption of n-octane from air to snow was measured, resulting in a sorption coefficient of log -4.41 cu m/sq m at -6.8 deg C(6).
Literature: (1) Miller MM et al; Environ Sci Technol 19:522-9 (1985) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Oct 30, 2013: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (3) Swann RL et al; Res Rev 85: 17-28 (1983) (4) Endo S et al; Environ Sci Technol 42): 5897-5903 (2008) (5) Kim H et al; Environ Sci Technol 35: 4457-62 (2001) (6) Roth CM et al; Environ Sci Technol 38: 4078-84 (2004)
Vapor Pressure
PressureReference
14.1 mm Hg at 25 deg CYaws CL; Handbook of Vapor Pressure. Vol 3: C8-C28 Compounds. Houston, TX: Gulf Pub Co, p. 78 (1994)
MS-Links
1D-NMR-Links

Microorganisms emitting the compound
KingdomSpeciesBiological FunctionOrigin/HabitatReference
BacteriaPropionibacterium Acidifaciens DSM 21887 as a biomarker for a breath test for detection of cariesHertel et al., 2015
BacteriaStreptococcus Mutans DSM 20523 as a biomarker for a breath test for detection of cariesHertel et al., 2015
BacteriaXanthomonas Campestris Pv. Vesicatoria 85-10n/aWeise et al., 2012
FungiArmillaria Mellean/aMueller et al., 2013
FungiLaccaria Bicolorn/aMueller et al., 2013
FungiPaecilomyces Variotii Bainnacompost, soils, food productsSunesson et al., 1995
FungiPaxillus Involutus MAJn/aMueller et al., 2013
FungiPaxillus Involutus NAUn/aMueller et al., 2013
FungiPholiota Squarrosan/aMueller et al., 2013
FungiTrichodema Pseudokoningiin/aWheatley et al., 1997
FungiTrichodema Viriden/aWheatley et al., 1997
FungiVerticillium Longisporumn/aMueller et al., 2013
Method
KingdomSpeciesGrowth MediumApplied MethodVerification
BacteriaPropionibacterium Acidifaciens DSM 21887Brain-Heart-Infusion agarTenaxâ„¢-trap/GC-MS
BacteriaStreptococcus Mutans DSM 20523Brain-Heart-Infusion agarTenaxâ„¢-trap/GC-MS
BacteriaXanthomonas Campestris Pv. Vesicatoria 85-10NBIIClosed airflow-system/GC-MS and PTR-MS
FungiArmillaria MelleaMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MS
FungiLaccaria BicolorMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MS
FungiPaecilomyces Variotii BainDG18,MEAGC/MS
FungiPaxillus Involutus MAJMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MS
FungiPaxillus Involutus NAUMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MS
FungiPholiota SquarrosaMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MS
FungiTrichodema PseudokoningiiMalt extract/Low mediumGC/MS
FungiTrichodema VirideMalt extract/Low mediumGC/MS
FungiVerticillium LongisporumMelin-Nor krans synthetic medium (modified)Headspace trapping ( using stir bar sorptive extraction )/ GC-MS